NDK_EGARCH_RESID

int __stdcall NDK_EGARCH_RESID ( double *  pData,
size_t  nSize,
double  mu,
const double *  Alphas,
size_t  p,
const double *  Gammas,
size_t  g,
const double *  Betas,
size_t  q,
WORD  nInnovationType,
double  nu,
WORD  retType 
)

Returns an array of cells for the standardized residuals of a given GARCH model.

Returns
status code of the operation
Return values
NDK_SUCCESS  Operation successful
NDK_FAILED  Operation unsuccessful. See Macros for full list.
Deprecated:
this function is being replaced by NDK_EGARCH_FITTED()
See Also
NDK_GARCH_VALIDATE()
Parameters
[in] pData is the univariate time series data (a one dimensional array).
[in] nSize is the number of observations in pData.
[in] mu is the EGARCH model conditional mean (i.e. mu).
[in] Alphas are the parameters of the ARCH(p) component model (starting with the lowest lag).
[in] p is the number of elements in Alphas array
[in] Gammas are the leverage parameters (starting with the lowest lag).
[in] g is the number of elements in Gammas. Must be equal to (p-1).
[in] Betas are the parameters of the GARCH(q) component model (starting with the lowest lag).
[in] q is the number of elements in Betas array
[in] nInnovationType is the probability distribution function of the innovations/residuals (see INNOVATION_TYPE)
  • INNOVATION_GAUSSIAN Gaussian Distribution (default)
  • INNOVATION_TDIST Student's T-Distribution,
  • INNOVATION_GED Generalized Error Distribution (GED)
[in] nu is the shape factor (or degrees of freedom) of the innovations/residuals probability distribution function.
[in] retType is a switch to select a residuals-type:raw or standardized. see RESID_RETVAL_FUNC
Remarks
  1. The underlying model is described here.
  2. The time series is homogeneous or equally spaced.
  3. The time series may include missing values (e.g. #N/A) at either end.
  4. The number of gamma-coefficients must match the number of alpha-coefficients.
  5. The number of parameters in the input argument - alpha - determines the order of the ARCH component model.
  6. The number of parameters in the input argument - beta - determines the order of the GARCH component model.
  7. The standardized residuals have a mean of zero and a variance of one (1).
  8. The E-GARCH model's standardized residuals is defined as:\[\epsilon_t = \frac{a_t}{\sigma_t}\] \[a_t = x_t - \mu \] Where:
    • \(epsilon\) is the E-GARCH model's standardized residual at time t.
    • \(a_t\) is the E-GARCH model's residual at time t.
    • \(x_t\) is the value of the time series at time t.
    • \(\mu\) is the E-GARCH mean.
    • \(\sigma_t\) is E-GARCH conditional volatility at time t.
Requirements
Header SFSDK.H
Library SFSDK.LIB
DLL SFSDK.DLL
Namespace:  NumXLAPI
Class:  SFSDK
Scope:  Public
Lifetime:  Static
int NDK_EGARCH_RESID ( double[]  pData,
UIntPtr  nSize,
double  mu,
double[]  Alphas,
UIntPtr  p,
double[]  Gammas,
double[]  Betas,
UIntPtr  q,
short  nInnovationType,
double  nu,
short  retType 
)

Returns an array of cells for the standardized residuals of a given GARCH model.

Return Value

a value from NDK_RETCODE enumeration for the status of the call. 

NDK_SUCCESS  operation successful
Error  Error Code
Deprecated:
this function is being replaced by NDK_EGARCH_FITTED()
See Also
NDK_GARCH_VALIDATE()
Parameters
[in] pData is the univariate time series data (a one dimensional array).
[in] nSize is the number of observations in pData.
[in] mu is the EGARCH model conditional mean (i.e. mu).
[in] Alphas are the parameters of the ARCH(p) component model (starting with the lowest lag).
[in] p is the number of elements in Alphas array
[in] Gammas are the leverage parameters (starting with the lowest lag).
[in] g is the number of elements in Gammas. Must be equal to (p-1).
[in] Betas are the parameters of the GARCH(q) component model (starting with the lowest lag).
[in] q is the number of elements in Betas array
[in] nInnovationType is the probability distribution function of the innovations/residuals (see INNOVATION_TYPE)
  • INNOVATION_GAUSSIAN Gaussian Distribution (default)
  • INNOVATION_TDIST Student's T-Distribution,
  • INNOVATION_GED Generalized Error Distribution (GED)
[in] nu is the shape factor (or degrees of freedom) of the innovations/residuals probability distribution function.
[in] retType is a switch to select a residuals-type:raw or standardized. see RESID_RETVAL_FUNC
Remarks
  1. The underlying model is described here.
  2. The time series is homogeneous or equally spaced.
  3. The time series may include missing values (e.g. #N/A) at either end.
  4. The number of gamma-coefficients must match the number of alpha-coefficients.
  5. The number of parameters in the input argument - alpha - determines the order of the ARCH component model.
  6. The number of parameters in the input argument - beta - determines the order of the GARCH component model.
  7. The standardized residuals have a mean of zero and a variance of one (1).
  8. The E-GARCH model's standardized residuals is defined as:\[\epsilon_t = \frac{a_t}{\sigma_t}\] \[a_t = x_t - \mu \] Where:
    • \(epsilon\) is the E-GARCH model's standardized residual at time t.
    • \(a_t\) is the E-GARCH model's residual at time t.
    • \(x_t\) is the value of the time series at time t.
    • \(\mu\) is the E-GARCH mean.
    • \(\sigma_t\) is E-GARCH conditional volatility at time t.
Exceptions
Exception Type Condition
None N/A
Requirements
Namespace NumXLAPI
Class SFSDK
Scope Public
Lifetime Static
Package NumXLAPI.DLL
Examples

	
References
* Hamilton, J .D.; Time Series Analysis , Princeton University Press (1994), ISBN 0-691-04289-6
* Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740
* D. S.G. Pollock; Handbook of Time Series Analysis, Signal Processing, and Dynamics; Academic Press; Har/Cdr edition(Nov 17, 1999), ISBN: 125609906
* Box, Jenkins and Reisel; Time Series Analysis: Forecasting and Control; John Wiley & SONS.; 4th edition(Jun 30, 2008), ISBN: 470272848