NDK_ACFCI

int __stdcall NDK_ACFCI ( double *  X,
size_t  N,
size_t  K,
double  alpha,
double *  ULCI,
double *  LLCI 
)

Calculates the confidence interval limits (upper/lower) for the autocorrelation function.

Returns
status code of the operation
Return values
NDK_SUCCESS  Operation successful
NDK_FAILED  Operation unsuccessful. See Macros for full list.
Parameters
[in] X is the univariate time series data (a one dimensional array).
[in] N is the number of observations in X.
[in] K is the lag order (e.g. k=0 (no lag), k=1 (1st lag), etc.).
[in] alpha is the statistical significance level. If missing, a default of 5% is assumed.
[out] ULCI is the upper limit value of the confidence interval
[out] LLCI is the lower limit value of the confidence interval.
Remarks
1. The time series is homogeneous or equally spaced.
2. The time series may include missing values (NaN) at either end.
3. The lag order (k) must be less than the time series size, or else an error value (NDK_FAILED) is returned.
4. The ACFCI function calculates the confidence limits as:
  • \(\hat\rho_k - Z_{\alpha/2}\times \sigma_{\rho_k} \leq \rho_k \leq \hat\rho_k+ Z_{\alpha/2}\times \sigma_{\rho_k}\)
    />, where:
    • \(rho_k\) is the population autocorrelation function.
    • \(\sigma_{\rho_k}\) is the standard error of the sample autocorrelation.
    • \(\hat{\rho_{k}}\) is the sample autocorrelation function for lag k.
    • \(Z\sim N(0,1)\)
    • \(P(\left|Z\right|\geq Z_{\alpha/2}) = \alpha\)
5. For the case in which the underlying population distribution is normal, the sample autocorrelation also has a normal distribution:
  • \(\hat \rho_k \sim N(\rho_k,\sigma_{\rho_k}^2)\), where:
    • \(\hat \rho_k\) is the sample autocorrelation for lag k.
    • \(\rho_k\) is the population autocorrelation for lag k.
    • \(\sigma_{\rho_k}\) is the standard error of the sample autocorrelation for lag k.
6. Bartlett proved that the variance of the sample autocorrelation of a stationary normal stochastic process (i.e. independent, identically normal distributed errors) can be formulated as:
  • \(\sigma_{\rho_k}^2 = \frac{\sum_{j=-\infty}^{\infty}\rho_j^2+\rho_{j+k}\rho_{j-k}-4\rho_j\rho_k\rho_{i-k}+2\rho_j^2\rho_k^2}{T}\)
7. Furthermore, the variance of the sample autocorrelation is reformulated:
  • \(\sigma_{\rho_k}^2 = \frac{1+\sum_{j=1}^{k-1}\hat\rho_j^2}{T}\), where:
    • \(\sigma_{\rho_k}\) is the standard error of the sample autocorrelation for lag k.
    • \(T\) is the sample data size.
    • \(\hat\rho_j\) is the sample autocorrelation function for lag j.
    • \(k\) is the lag order.
Requirements
Header SFSDK.H
Library SFSDK.LIB
DLL SFSDK.DLL
Example
#include "SFMacros.h"
#include "SFSDK.h"

// Input time series: 110 observation 
double data[110]={0.23, 0.24, 0.45, ..., 0.95}

int nRet = NDK_FAILED;
double alpha = 0.05f;
double UL = -2.0f;
double LL = -2.0f;

nRet = NDK_ACFCI(data, 110, 1, alpha, &UL,  &LL);
if( nRet < NDK_SUCCESS){
    // Error occured
    // Call NDK_MSG to retrieve description of the error, and write it to the log file
    ....
}
   
Namespace:  NumXLAPI
Class:  SFSDK
Scope:  Public
Lifetime:  Static
int NDK_ACFCI ( double[]  pData,
UIntPtr  nSize,
int  nLag,
double  alpha,
out double  retUpper,
out double  retLower 
)

Calculates the confidence interval limits (upper/lower) for the autocorrelation function.

Return Value

a value from NDK_RETCODE enumeration for the status of the call. 

NDK_SUCCESS  operation successful
Error  Error Code
Parameters
[in] pData is the univariate time series data (a one dimensional array).
[in] nSize is the number of observations in pData.
[in] nLag is the lag order (e.g. nLag=0 (no lag), nLag=1 (1st lag), etc.).
[in] alpha is the statistical significance level. If missing, a default of 5% is assumed.
[out] retUpper is the upper limit value of the confidence interval
[out] retLower is the lower limit value of the confidence interval.
Remarks
1. The time series is homogeneous or equally spaced.
2. The time series may include missing values (NaN) at either end.
3. The lag order (nLag) must be less than the time series size, or else an error value (NDK_FAILED) is returned.
4. The ACFCI function calculates the confidence limits as:
  • \(\hat\rho_k - Z_{\alpha/2}\times \sigma_{\rho_k} \leq \rho_k \leq \hat\rho_k+ Z_{\alpha/2}\times \sigma_{\rho_k}\)
    />, where:
    • \(rho_k\) is the population autocorrelation function.
    • \(\sigma_{\rho_k}\) is the standard error of the sample autocorrelation.
    • \(\hat{\rho_{k}}\) is the sample autocorrelation function for nlag.
    • \(Z\sim N(0,1)\)
    • \(P(\left|Z\right|\geq Z_{\alpha/2}) = \alpha\)
5. For the case in which the underlying population distribution is normal, the sample autocorrelation also has a normal distribution:
  • \(\hat \rho_k \sim N(\rho_k,\sigma_{\rho_k}^2)\), where:
    • \(\hat \rho_k\) is the sample autocorrelation for lag k.
    • \(\rho_k\) is the population autocorrelation for lag k.
    • \(\sigma_{\rho_k}\) is the standard error of the sample autocorrelation for lag k.
6. Bartlett proved that the variance of the sample autocorrelation of a stationary normal stochastic process (i.e. independent, identically normal distributed errors) can be formulated as:
  • \(\sigma_{\rho_k}^2 = \frac{\sum_{j=-\infty}^{\infty}\rho_j^2+\rho_{j+k}\rho_{j-k}-4\rho_j\rho_k\rho_{i-k}+2\rho_j^2\rho_k^2}{T}\)
7. Furthermore, the variance of the sample autocorrelation is reformulated:
  • \(\sigma_{\rho_k}^2 = \frac{1+\sum_{j=1}^{k-1}\hat\rho_j^2}{T}\), where:
    • \(\sigma_{\rho_k}\) is the standard error of the sample autocorrelation for lag k.
    • \(T\) is the sample data size.
    • \(\hat\rho_j\) is the sample autocorrelation function for lag j.
    • \(k\) is the lag order.
Exceptions
Exception Type Condition
None N/A
Requirements
Header SFSDK.H
Library SFSDK.LIB
DLL SFSDK.DLL
Examples
	
References
* Hamilton, J .D.; Time Series Analysis , Princeton University Press (1994), ISBN 0-691-04289-6
* Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740
* D. S.G. Pollock; Handbook of Time Series Analysis, Signal Processing, and Dynamics; Academic Press; Har/Cdr edition(Nov 17, 1999), ISBN: 125609906
* Box, Jenkins and Reisel; Time Series Analysis: Forecasting and Control; John Wiley & SONS.; 4th edition(Jun 30, 2008), ISBN: 470272848