NDK_ARIMA_SIM

int __stdcall NDK_ARIMA_SIM ( double  mean,
double  sigma,
WORD  nIntegral,
double *  phis,
size_t  p,
double *  thetas,
size_t  q,
double *  pData,
size_t  nSize,
UINT  nSeed,
double *  retVal,
size_t  nSteps 
)

Returns an array of cells for the simulated values.

Returns
status code of the operation
Return values
NDK_SUCCESS  Operation successful
NDK_FAILED  Operation unsuccessful. See Macros for full list.
Parameters
[in] mean is the ARMA model mean (i.e. mu).
[in] sigma is the standard deviation of the model's residuals/innovations.
[in] nIntegral is the model's integration order.
[in] phis are the parameters of the AR(p) component model (starting with the lowest lag).
[in] p is the number of elements in phis (order of AR component)
[in] thetas are the parameters of the MA(q) component model (starting with the lowest lag).
[in] q is the number of elements in thetas (order of MA component)
[in] pData is the univariate time series data (a one dimensional array).
[in] nSize is the number of observations in pData.
[in] nSeed is an unsigned integer for setting up the random number generators
[out] retVal is the calculated simulation value
[in] nSteps is the number of future steps to simulate for.
Remarks
  1. The underlying model is described here.
  2. NDK_ARMA_SIM returns an array of one simulation path starting from the end of the input data.
  3. The input data argument (i.e. latest observations) is optional. If omitted, an array of zeroes is assumed.
  4. The time series is homogeneous or equally spaced.
  5. The time series may include missing values (e.g. NaN) at either end.
  6. For the input argument - phi:
    • The input argument is optional and can be omitted, in which case no AR component is included.
    • The order of the parameters starts with the lowest lag.
    • The order of the AR component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
  7. For the input argument - theta:
    • The input argument is optional and can be omitted, in which case no MA component is included.
    • The order of the parameters starts with the lowest lag.
    • The order of the MA component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
Requirements
Header SFSDK.H
Library SFSDK.LIB
DLL SFSDK.DLL
Examples


   
Namespace:  NumXLAPI
Class:  SFSDK
Scope:  Public
Lifetime:  Static
int NDK_ARIMA_SIM ( double[]  mean,
double  sigma,
short  nIntegral,
double *  phis,
size_t  p,
double[]  thetas,
UIntPtr  q,
double[]  pData,
UIntPtr  nSize,
UIntPtr  nSeed,
double[]  retVal,
UIntPtr  nSteps 
)

Returns an array of cells for the simulated values.

Return Value

a value from NDK_RETCODE enumeration for the status of the call. 

NDK_SUCCESS  operation successful
Error  Error Code
Parameters
[in] mean is the ARMA model mean (i.e. mu).
[in] sigma is the standard deviation of the model's residuals/innovations.
[in] nIntegral is the model's integration order.
[in] phis are the parameters of the AR(p) component model (starting with the lowest lag).
[in] p is the number of elements in phis (order of AR component)
[in] thetas are the parameters of the MA(q) component model (starting with the lowest lag).
[in] q is the number of elements in thetas (order of MA component)
[in] pData is the univariate time series data (a one dimensional array).
[in] nSize is the number of observations in pData.
[in] nSeed is an unsigned integer for setting up the random number generators
[out] retVal is the calculated simulation value
[in] nSteps is the number of future steps to simulate for.
Remarks
  1. The underlying model is described here.
  2. NDK_ARMA_SIM returns an array of one simulation path starting from the end of the input data.
  3. The input data argument (i.e. latest observations) is optional. If omitted, an array of zeroes is assumed.
  4. The time series is homogeneous or equally spaced.
  5. The time series may include missing values (e.g. NaN) at either end.
  6. For the input argument - phi:
    • The input argument is optional and can be omitted, in which case no AR component is included.
    • The order of the parameters starts with the lowest lag.
    • The order of the AR component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
  7. For the input argument - theta:
    • The input argument is optional and can be omitted, in which case no MA component is included.
    • The order of the parameters starts with the lowest lag.
    • The order of the MA component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
Exceptions
Exception Type Condition
None N/A
Requirements
Namespace NumXLAPI
Class SFSDK
Scope Public
Lifetime Static
Package NumXLAPI.DLL
References
* Hamilton, J .D.; Time Series Analysis , Princeton University Press (1994), ISBN 0-691-04289-6
* Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740
* D. S.G. Pollock; Handbook of Time Series Analysis, Signal Processing, and Dynamics; Academic Press; Har/Cdr edition(Nov 17, 1999), ISBN: 125609906
* Box, Jenkins and Reisel; Time Series Analysis: Forecasting and Control; John Wiley & SONS.; 4th edition(Jun 30, 2008), ISBN: 470272848