\(\beta_{i,j}\) is the i-th coefficient in the j-th regression model (j=1,2,3).
The Chow statistics are defined as follows: \[\frac{(\mathrm{SSE}_C -(\mathrm{SSE}_1+\mathrm{SSE}_2))/(k)}{(\mathrm{SSE}_1+\mathrm{SSE}_2)/(N_1+N_2-2k)}\] Where:
\(\mathrm{SSE}\) is the sum of the squared residuals.
\(K\) is the number of explanatory variables.
\(N_1\) is the number of non-missing observations in the first data set.
\(N_2\) is the number of non-missing observations in the second data set.
The Chow test statistics follow an F-distribution with \(k\), and \(N_1+N_2-2\times K\) degrees of freedom.
Requirements
Header
SFSDK.H
Library
SFSDK.LIB
DLL
SFSDK.DLL
Examples
Namespace:
NumXLAPI
Class:
SFSDK
Scope:
Public
Lifetime:
Static
int NDK_CHOWTEST
(
ref UIntPtr
XX1,
UIntPtr
M,
double[]
Y1,
UIntPtr
N1,
ref UIntPtr
XX2,
double[]
Y2,
UIntPtr
N2,
Byte[]
mask,
UIntPtr
nMaskLen,
double
intercept,
TEST_RETURN
retType,
ref double
retVal
)
Returns the p-value of the regression stability test (i.e. whether the coefficients in two linear regressions on different data sets are equal).
\(\beta_{i,j}\) is the i-th coefficient in the j-th regression model (j=1,2,3).
The Chow statistics are defined as follows: \[\frac{(\mathrm{SSE}_C -(\mathrm{SSE}_1+\mathrm{SSE}_2))/(k)}{(\mathrm{SSE}_1+\mathrm{SSE}_2)/(N_1+N_2-2k)}\] Where:
\(\mathrm{SSE}\) is the sum of the squared residuals.
\(K\) is the number of explanatory variables.
\(N_1\) is the number of non-missing observations in the first data set.
\(N_2\) is the number of non-missing observations in the second data set.
The Chow test statistics follow an F-distribution with \(k\), and \(N_1+N_2-2\times K\) degrees of freedom.
Exceptions
Exception Type
Condition
None
N/A
Requirements
Namespace
NumXLAPI
Class
SFSDK
Scope
Public
Lifetime
Static
Package
NumXLAPI.DLL
Examples
References
* Hamilton, J .D.; Time Series Analysis , Princeton University Press (1994), ISBN 0-691-04289-6