int __stdcall NDK_PCR_PARAM | ( | double ** | X, |
size_t | nXSize, | ||
size_t | nXVars, | ||
LPBYTE | mask, | ||
size_t | nMaskLen, | ||
double * | Y, | ||
size_t | nYSize, | ||
double | intercept, | ||
double | alpha, | ||
WORD | nRetType, | ||
WORD | nParamIndex, | ||
double * | retVal | ||
) |
Calculates the regression coefficients values for a given input variable.
- Returns
- status code of the operation
- Return values
-
NDK_SUCCESS Operation successful NDK_FAILED Operation unsuccessful. See Macros for full list.
- Parameters
-
[in] X is the independent variables data matrix, such that each column represents one variable [in] nXSize is the number of observations (i.e. rows) in X [in] nXVars is the number of variables (i.e. columns) in X [in] mask is the boolean array to select a subset of the input variables in X. If missing (i.e. NULL), all variables in X are included. [in] nMaskLen is the number of elements in mask [in] Y is the response or the dependent variable data array (one dimensional array) [in] nYSize is the number of elements in Y [in] intercept is the constant or the intercept value to fix (e.g. zero). If missing (NaN), an intercept will not be fixed and is computed normally [in] alpha is the statistical significance of the test (i.e. alpha) [in] nRetType is a switch to select the return output: - Value (default),
- Std. Error
- t-stat
- P-Value
- Upper Limit (CI)
- Lower Limit (CI))
[in] nParamIndex is a switch to designate the target parameter (0 = intercept (default), 1 = first variable, 2 = 2nd variable, etc.). [out] retVal is the calculated parameter value or statistics.
- Remarks
-
- The underlying model is described here. \[\mathbf{y} = \mathbf{X}\boldsymbol\beta + \boldsymbol\varepsilon\] \[\hat{\boldsymbol\beta} = (\mathbf{X}^{\rm T}\mathbf{X})^{-1} \mathbf{X}^{\rm T}\mathbf{y} = \big(\, \tfrac{1}{n}{\textstyle\sum} \mathbf{x}_i \mathbf{x}^{\rm T}_i \,\big)^{-1} \big(\, \tfrac{1}{n}{\textstyle\sum} \mathbf{x}_i y_i \,\big).\] Where:
- \(\hat{\boldsymbol\beta}\) is the estimated regression coefficients.
- The sample data may include missing values.
- Each column in the input matrix corresponds to a separate variable.
- Each row in the input matrix corresponds to an observation.
- Observations (i.e. row) with missing values in X or Y are removed.
- The number of rows of the response variable (Y) must be equal to the number of rows of the explanatory variables (X).
- The MLR_PARAM function is available starting with version 1.60 APACHE.
- Requirements
-
Header SFSDK.H Library SFSDK.LIB DLL SFSDK.DLL
- References
- * Hamilton, J .D.; Time Series Analysis , Princeton University Press (1994), ISBN 0-691-04289-6
- * Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740
- * D. S.G. Pollock; Handbook of Time Series Analysis, Signal Processing, and Dynamics; Academic Press; Har/Cdr edition(Nov 17, 1999), ISBN: 125609906
- * Box, Jenkins and Reisel; Time Series Analysis: Forecasting and Control; John Wiley & SONS.; 4th edition(Jun 30, 2008), ISBN: 470272848