NDK_ARIMA_PARAM

int __stdcall NDK_ARIMA_PARAM ( double *  pData,
size_t  nSize,
double *  mean,
double *  sigma,
WORD  nIntegral,
double *  phis,
size_t  p,
double *  thetas,
size_t  q,
MODEL_RETVAL_FUNC  retType,
size_t  maxIter 
)

Returns an array of cells for the initial (non-optimal), optimal or standard errors of the model's parameters.

Returns
status code of the operation
Return values
NDK_SUCCESS  Operation successful
NDK_FAILED  Operation unsuccessful. See Macros for full list.
Parameters
[in] pData  is the univariate time series data (a one dimensional array).
[in] nSize  is the number of observations in pData.
[in,out] mean  is the ARMA model mean (i.e. mu).
[in,out] sigma  is the standard deviation of the model's residuals/innovations.
[in] nIntegral  is the model's integration order.
[in,out] phis  are the parameters of the AR(p) component model (starting with the lowest lag).
[in] p is the number of elements in phis (order of AR component)
[in,out] thetas  are the parameters of the MA(q) component model (starting with the lowest lag).
[in] q is the number of elements in thetas (order of MA component)
[in] retType  is a switch to select the type of value returned: 1= Quick Guess, 2=Calibrated, 3= Std. Errors
Order   Description
1 Quick guess (non-optimal) of parameters values (default)
2 Calibrated (optimal) values for the model's parameters
3 Standard error of the parameters' values
[in] maxIter  is the maximum number of iterations used to calibrate the model. If missing or less than 100, the default maximum of 100 is assumed.
Remarks
  1. The underlying model is described here.
  2. The time series is homogeneous or equally spaced.
  3. The time series may include missing values (e.g. NaN) at either end.
  4. ARIMA_PARAM returns an array for the values (or errors) of the model's parameters in the following order:
    • \(\mu\)
    • \(\phi_1,\phi_2,...,\phi_p\)
    • \(\theta_1,\theta_2,...,\theta_q\)
    • \(\sigma\)
  5. The integration order argument (d) must be a positive integer.
  6. The long-run mean can take any value or may be omitted, in which case a zero value is assumed.
  7. The residuals/innovations standard deviation (sigma) must be greater than zero.
  8. For the input argument (phi):
    • The input argument is optional and can be omitted, in which case no AR component is included.
    • The order of the parameters starts with the lowest lag.
    • The order of the AR component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
  9. For the input argument (theta):
    • The input argument is optional and can be omitted, in which case no MA component is included.
    • The order of the parameters starts with the lowest lag.
    • The order of the MA component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
Requirements
Header SFSDK.H
Library SFSDK.LIB
DLL SFSDK.DLL
Examples


   
Namespace:  NumXLAPI
Class:  SFSDK
Scope:  Public
Lifetime:  Static
int NDK_ARIMA_PARAM ( double[]  pData,
UInPtr  nSize,
ref double  mean,
ref double  sigma,
short  nIntegral,
double[]  phis,
UIntPtr  p,
double[]  thetas,
UIntPtr  q,
MODEL_RETVAL_FUNC  retType,
UIntPtr  maxIter 
)

Returns an array of cells for the initial (non-optimal), optimal or standard errors of the model's parameters.

Return Value

a value from NDK_RETCODE enumeration for the status of the call. 

NDK_SUCCESS  operation successful
Error  Error Code
Parameters
[in] pData  is the univariate time series data (a one dimensional array).
[in] nSize  is the number of observations in pData.
[in,out] mean  is the ARMA model mean (i.e. mu).
[in,out] sigma  is the standard deviation of the model's residuals/innovations.
[in] nIntegral  is the model's integration order.
[in,out] phis  are the parameters of the AR(p) component model (starting with the lowest lag).
[in] p is the number of elements in phis (order of AR component)
[in,out] thetas  are the parameters of the MA(q) component model (starting with the lowest lag).
[in] q is the number of elements in thetas (order of MA component)
[in] retType  is a switch to select the type of value returned: 1= Quick Guess, 2=Calibrated, 3= Std. Errors
Order   Description
1 Quick guess (non-optimal) of parameters values (default)
2 Calibrated (optimal) values for the model's parameters
3 Standard error of the parameters' values
[in] maxIter  is the maximum number of iterations used to calibrate the model. If missing or less than 100, the default maximum of 100 is assumed.
Remarks
  1. The underlying model is described here.
  2. The time series is homogeneous or equally spaced.
  3. The time series may include missing values (e.g. NaN) at either end.
  4. ARIMA_PARAM returns an array for the values (or errors) of the model's parameters in the following order:
    • \(\mu\)
    • \(\phi_1,\phi_2,...,\phi_p\)
    • \(\theta_1,\theta_2,...,\theta_q\)
    • \(\sigma\)
  5. The integration order argument (d) must be a positive integer.
  6. The long-run mean can take any value or may be omitted, in which case a zero value is assumed.
  7. The residuals/innovations standard deviation (sigma) must be greater than zero.
  8. For the input argument (phi):
    • The input argument is optional and can be omitted, in which case no AR component is included.
    • The order of the parameters starts with the lowest lag.
    • The order of the AR component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
  9. For the input argument (theta):
    • The input argument is optional and can be omitted, in which case no MA component is included.
    • The order of the parameters starts with the lowest lag.
    • The order of the MA component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
    Exceptions
    Exception Type Condition
    None N/A
    Requirements
    Namespace NumXLAPI
    Class SFSDK
    Scope Public
    Lifetime Static
    Package NumXLAPI.DLL
References
* Hamilton, J .D.; Time Series Analysis , Princeton University Press (1994), ISBN 0-691-04289-6
* Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740
* D. S.G. Pollock; Handbook of Time Series Analysis, Signal Processing, and Dynamics; Academic Press; Har/Cdr edition(Nov 17, 1999), ISBN: 125609906
* Box, Jenkins and Reisel; Time Series Analysis: Forecasting and Control; John Wiley & SONS.; 4th edition(Jun 30, 2008), ISBN: 470272848