NDK_ACFCI

Last Modified on 06/24/2016 10:54 am CDT

- C/C++
- .Net

```
int __stdcall NDK_ACFCI(double * X,
size_t N,
size_t K,
double alpha,
double * ULCI,
double * LLCI
)
```

Calculates the confidence interval limits (upper/lower) for the autocorrelation function.

Returns

status code of the operation

Return values

NDK_SUCCESS Operation successful NDK FAILED Operation unsuccessful. See <u>Macros</u> for full list.

Parameters

[in] **X** is the univariate time series data (a one dimensional array).

[in] N is the number of observations in X.

- [in] **K** is the lag order (e.g. k=0 (no lag), k=1 (1st lag), etc.).
- [in] **alpha**is the statistical significance level. If missing, a default of 5% is assumed.

 $[{\tt out}] \ensuremath{\text{ULCI}}$ is the upper limit value of the confidence interval

[out] LLCI is the lower limit value of the confidence interval.

Remarks

- 1. The time series is homogeneous or equally spaced.
- 2. The time series may include missing values (NaN) at either end.

3. The lag order (k) must be less than the time series size, or else an error value (NDK_FAILED) is returned.

- 4. The ACFCI function calculates the confidence limits as:
- \(\hat\rho_k Z_{\alpha/2}\times \sigma_{\rho_k} \leq \rho_k \leq \hat\rho_k+ Z_{\alpha/2}\times \sigma_{\rho_k})

/>, where:

- \(rho_k\) is the population autocorrelation function.
- $\circ \ \$ where the sample autocorrelation.
- \(\hat{\rho_{k}}\) is the sample autocorrelation function for lag k.

- \(Z\sim N(0,1)\)
- \(P(\left|Z\right|\geq Z_{\alpha/2}) = \alpha\)

5. For the case in which the underlying population distribution is normal, the sample autocorrelation also has a normal distribution:

- \(\hat \rho_k \sim N(\rho_k,\sigma_{\rho_k}^2)\), where:
 - $\circ \ \$ what $\ \$ be sample autocorrelation for lag k.
 - \(\rho_k\) is the population autocorrelation for lag k.
 - \(\sigma_{\rho_k}\) is the standard error of the sample autocorrelation for lag k.

6. Bartlett proved that the variance of the sample autocorrelation of a stationary normal stochastic process (i.e. independent, identically normal distributed errors) can be formulated as:

- $(\sum_{i=k}^2 = \frac{\sum_{i=k}^2 = \frac{j_k}{k} + 2 \sum_{i=k}^{i=k} + 2 \sum_{$
- 7. Furthermore, the variance of the sample autocorrelation is reformulated:
- $(\sum_{i=1}^{k-1}), where:$
 - $\circ \ \$ o $\$ he standard error of the sample autocorrelation for lag k.
 - $\circ\ \mbox{(T\)}$ is the sample data size.
 - \(\hat\rho_j\) is the sample autocorrelation function for lag j.
 - \(k\) is the lag order.

Requirements

Header	SFSDK.H
Library	SFSDK.LIB
DLL	SFSDK.DLL

Example

```
#include "SFMacros.h"
#include "SFSDK.h"

// Input time series: 110 observation
double data[110]={0.23, 0.24, 0.45, ..., 0.95}
int nRet = NDK_FAILED;
double alpha = 0.05f;
double alpha = 0.05f;
double LL = -2.0f;
nRet = NDK_ACFCI(data, 110, 1, alpha, &UL, &LL);
if( nRet < NDK_SUCCESS){
    // Error occured
    // Call NDK_MSG to retrieve description of the error, and write it to th
e log file
    ....
}</pre>
```

int NDK_ACFC	l(double[]	pData,
	UIntPtr	nSize,
	int	nLag,
	double	alpha,
	out double	retUpper,
	out double	retLower
)	

Namespace: NumXLAPI Class: SFSDK Scope: Public Lifetime: Static

Calculates the confidence interval limits (upper/lower) for the autocorrelation function.

Return Value

a value from NDK_RETCODE enumeration for the status of the call.

NDK_SUCCESS operation successful Error Error Code

Parameters

[in]	pData	is the univariate time series data (a one dimensional array).
[in]	nSize	is the number of observations in pData.
[in]	nLag	is the lag order (e.g. nLag=0 (no lag), nLag=1 (1st lag), etc.).
[in]	alpha	is the statistical significance level. If missing, a default of 5% is assumed.

[out]retUpperis the upper limit value of the confidence interval
[out]retLoweris the lower limit value of the confidence interval.

Remarks

- 1. The time series is homogeneous or equally spaced.
- 2. The time series may include missing values (NaN) at either end.
- 3. The lag order (nLag) must be less than the time series size, or else an error value

(NDK_FAILED) is returned.

4. The ACFCI function calculates the confidence limits as:

\(\hat\rho_k - Z_{\alpha/2}\times \sigma_{\rho_k} \leq \rho_k \leq \hat\rho_k+ Z_{\alpha/2}\times \sigma_{\rho_k})

/>, where:

- \(rho_k\) is the population autocorrelation function.
- \(\sigma_{\rho_k}\) is the standard error of the sample autocorrelation.
- \(Z\sim N(0,1)\)
- \(P(\left|Z\right|\geq Z_{\alpha/2}) = \alpha\)

5. For the case in which the underlying population distribution is normal, the sample autocorrelation also has a normal distribution:

- \(\hat \rho_k \sim N(\rho_k,\sigma_{\rho_k}^2)\), where:
 - $\circ~\(\hat \rbosc{relation} for lag k.$
 - \(\rho_k\) is the population autocorrelation for lag k.
 - \(\sigma_{\rho_k}\) is the standard error of the sample autocorrelation for lag k.

6. Bartlett proved that the variance of the sample autocorrelation of a stationary normal stochastic process (i.e. independent, identically normal distributed errors) can be formulated as:

- $(\sum_{i=k}^2 = \frac{\sum_{j=-infty}^{infty}\rho_j^2+rho_{j+k}\rho_{j-k}-4\rho_j\rho_k\rho_{i-k}+2\rho_j^2\rho_k^2}{T})$
- 7. Furthermore, the variance of the sample autocorrelation is reformulated:
- $(\sum_{i=1}^{k-1}), where:$
 - $\circ\ \$ (\sigma_{\rho_k}) is the standard error of the sample autocorrelation for lag k.
 - \(T\) is the sample data size.
 - $\circ\ \$ ((hat\rho_j)) is the sample autocorrelation function for lag j.
 - \(k\) is the lag order.

Exceptions

Exception Type	Condition
None	N/A

Requirements

Header	SFSDK.H
Library	SFSDK.LIB
DLL	SFSDK.DLL

Examples

References

Hamilton, J .D.; Time Series Analysis, Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]