NDK EGARCH RESID

Last Modified on 07/15/2016 9:47 am CDT

- C/C++
- .Net

```
int stdcall NDK EGARCH RESID(double *
                                               pData,
                                 size t
                                               nSize,
                                 double
                                               mu,
                                 const double * Alphas,
                                 size t
                                 const double * Gammas,
                                 size t
                                               g,
                                 const double * Betas,
                                 size t
                                 WORD
                                               nInnovationType,
                                 double
                                               nu,
                                 WORD
                                               retType
                                )
```

Returns an array of cells for the standardized residuals of a given GARCH model.

Returns

status code of the operation

Return values

NDK_SUCCESS Operation successful

NDK FAILED Operation unsuccessful. See Macros for full list.

Deprecated:

this function is being replaced by NDK EGARCH FITTED()

See Also

NDK_GARCH_VALIDATE()

Parameters

[in] **pData** is the univariate time series data (a one dimensional array).

[in] **nSize** is the number of observations in pData.

[in] **mu** is the EGARCH model conditional mean (i.e. mu).

[in] Alphas are the parameters of the ARCH(p) component model (starting with the

lowest lag).

[in] **p** is the number of elements in Alphas array

[in] **Gammas** are the leverage parameters (starting with the lowest lag).

is the number of elements in Gammas. Must be equal to (p-1).

[in] **Betas** are the parameters of the GARCH(q) component model (starting with the

lowest lag).

[in] **q** is the number of elements in Betas array

[in] nInnovationType is the probability distribution function of the innovations/residuals

(see INNOVATION_TYPE)

• INNOVATION_GAUSSIAN Gaussian Distribution (default)

• INNOVATION_TDIST Student's T-Distribution,

INNOVATION_GED Generalized Error Distribution (GED)

[in] **nu** is the shape factor (or degrees of freedom) of the innovations/residuals

probability distribution function.

[in] retType is a switch to select a residuals-type:raw or standardized.

see RESID RETVAL FUNC

Remarks

1. The underlying model is described here.

- 2. The time series is homogeneous or equally spaced.
- 3. The time series may include missing values (e.g. #N/A) at either end.
- 4. The number of gamma-coefficients must match the number of alpha-coefficients.
- 5. The number of parameters in the input argument alpha determines the order of the ARCH component model.
- 6. The number of parameters in the input argument beta determines the order of the GARCH component model.
- 7. The standardized residuals have a mean of zero and a variance of one (1).
- 8. The E-GARCH model's standardized residuals is defined as:\[\epsilon_t = \frac{a_t}{\sigma_t}\] \ [a_t = x_t \mu \] Where:
 - \(epsilon\) is the E-GARCH model's standardized residual at time t.
 - ∘ \(a_t\) is the E-GARCH model's residual at time t.
 - \(x t\) is the value of the time series at time t.
 - ∘ \(\mu\) is the E-GARCH mean.
 - \(\sigma_t\) is E-GARCH conditional volatility at time t.

Requirements

Header	SFSDK.H
Library	SFSDK.LIB
DLL	SFSDK.DLL

int NDK_EGARCH_RESID(double[] pData,

UIntPtr nSize,

Namespace: NumXLAPI

Class: SFSDK

double mu, Scope: Public
double[] Alphas, Lifetime: Static

UIntPtr p,
double[] Gammas,
double[] Betas,
UIntPtr q,
short nlnnovationType,
double nu,
short retType
)

Returns an array of cells for the standardized residuals of a given GARCH model.

Return Value

a value from NDK RETCODE enumeration for the status of the call.

NDK_SUCCESS operation successful

Error Code

Deprecated:

this function is being replaced by NDK_EGARCH_FITTED()

See Also

NDK_GARCH_VALIDATE()

Parameters

[in] **pData** is the univariate time series data (a one dimensional array).

[in] **nSize** is the number of observations in pData.

[in] **mu** is the EGARCH model conditional mean (i.e. mu).

[in] Alphas are the parameters of the ARCH(p) component model (starting with the

lowest lag).

[in] p is the number of elements in Alphas array

[in] **Gammas** are the leverage parameters (starting with the lowest lag). [in] **g** is the number of elements in Gammas. Must be equal to (p-1).

[in] **Betas** are the parameters of the GARCH(q) component model (starting with the

lowest lag).

[in] **q** is the number of elements in Betas array

[in] nInnovationType is the probability distribution function of the innovations/residuals

(see INNOVATION_TYPE)

• INNOVATION GAUSSIAN Gaussian Distribution (default)

• INNOVATION TDIST Student's T-Distribution,

• INNOVATION GED Generalized Error Distribution (GED)

[in] **nu** is the shape factor (or degrees of freedom) of the innovations/residuals

probability distribution function.

Remarks

- 1. The underlying model is described here.
- 2. The time series is homogeneous or equally spaced.
- 3. The time series may include missing values (e.g. #N/A) at either end.
- 4. The number of gamma-coefficients must match the number of alpha-coefficients.
- 5. The number of parameters in the input argument alpha determines the order of the ARCH component model.
- 6. The number of parameters in the input argument beta determines the order of the GARCH component model.
- 7. The standardized residuals have a mean of zero and a variance of one (1).
- 8. The E-GARCH model's standardized residuals is defined as:\[\epsilon_t = \frac{a_t}{\sigma_t}\] \ [a_t = x_t \mu \] Where:
 - \(epsilon\) is the E-GARCH model's standardized residual at time t.
 - \(a_t\) is the E-GARCH model's residual at time t.

 - \(\mu\) is the E-GARCH mean.
 - \(\sigma_t\) is E-GARCH conditional volatility at time t.

Exceptions

Exception Type	Condition
None	N/A

Requirements

Namespace	NumXLAPI
Class	SFSDK
Scope	Public
Lifetime	Static
Package	NumXLAPI.DLL

Examples

References

Hamilton, J.D.; Time Series Analysis, Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]