Airline Model

Last Modified on 03/10/2016 4:51 pm CST

The airline model is a special, but often used, case of multiplicative SARIMA model.

- 1. For a given seasonality length (s), the airline model is defined by four(4) parameters: \(\mu\),\(\sigma\),\(\theta\) and \(\Theta\). \[(1-L^s)(1-L)Y_t = \mu + (1-\theta L)(1-\Theta L)(1-\Theta L^s)a_t\] OR \[Z_t = (1-L^s)(1-L)Y_t = \mu + (1-\theta L)(1-\Theta L^s)a_t \] OR \[Z_t = \mu - \theta \times a_{t-s} + \theta \times a_{t-s} + \theta \times a_{t-s-1} + a_t \] Where:
 - \circ \(s\) is the length of seasonality.
 - \circ \(\mu\) is the model mean
 - \(\theta\) is coefficient of first lagged innovation
 - \(\Theta\) is the coefficient of s-lagged innovation.
 - \(\left [a_t\right] \) is the innovations time series.

Remarks

- \(\left[Y_t\right]\) is not a stationary process, but the differenced time series \(\left[Y_t\right]\) is.
- 2. After we difference (Y_t) (i.e. (Z_t) , the airline model is simplified to a special MA(s) model
- 3. The airline model has 5 parameters: \(\mu\,,\sigma\,,s\,,\theta\,,\Theta\)

Requirements

S H F S D d Κ Η S LΕ. i S **b** D r K **a** . ŗΓ. vΙ В

	S
	F
	S
1	D
1	L K
1	· ·
	D
	L
	L
_	

References

Hamilton, J .D.; <u>Time Series Analysis</u>, Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; <u>Analysis of Financial Time Series</u> John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]