NDK_XCFTEST

Last Modified on 04/20/2016 1:39 pm CDT

- C/C++
- .Net

```
int __stdcall NDK_XCFTEST(double * X,
double * Y,
size_t N,
int K,
double target,
double alpha,
WORD method,
WORD retType,
double * retVal
)
```

Calculates the test stats, p-value or critical value of the correlation test.

Returns

status code of the operation

Return values

NDK_SUCCESS Operation successful NDK_FAILED Operation unsuccessful. See <u>Macros</u> for full list.

Parameters

- [in] **X** is the first univariate time series data (a one dimensional array).
- [in] Y is the second univariate time series data (a one dimensional array).
- [in] **N** is the number of observations in X (or Y).
- [in] **K** is the lag order (e.g. k=0 (no lag), k=1 (1st lag), etc.).
- [in] target is the assumed correlation value. If missing, a default of zero is assumed.
- [in] **alpha** is the statistical significance level. If missing, a default of 5% is assumed.
- [in] method is the desired correlation coefficient (1=Pearson (default), 2=Spearman, 3=Kendall). If missing, a Pearson coefficient is assumed.
- [in] **retType** is a switch to select the return output:

	Method	Value	Description
	TEST_PVALUE	1	P-Value
	TEST_SCORE	2	Test statistics (aka score)
	TEST_CRITICALVALUE	E 3	Critical value.
]rotVal	is the calculated test stati	etice	

[out] retVal is the calculated test statistics.

Remarks

1. The XCF test hypothesis: $[H_{0}: rho_{x,y}=0] [H_{1}: rho_{x,y} neq 0]$ Where:

- \(H_{o}\) is the null hypothesis (\$\hat\rho\$ is not different from zero)
- (H_{1}) is the alternate hypothesis ($(hat\rbol)$ is statistically significant)
- $\circ \ (\rho_{x,y}) is the correlation factor between population X and Y$
- 2. The time series is homogeneous or equally spaced.
- 3. The significance level (i.e. alpha) is only needed for calculating the test critical value.
- 4. The time series may include missing values (NaN) at either end.
- 5. This is a two-tails (sides) test, so the computed p-value should be compared with half of the significance level (\(\alpha\)).

Requirements

Header	SFSDK.H
Library	SFSDK.LIB
DLL	SFSDK.DLL

Examples

int NDK_XCFTEST(double[]	pData1,	Namespace: NumXLAP
double[]	pData2,	Class: SFSDK
UInPtr	nSize,	Scope: Public
int	nLag,	Lifetime: Static
double	target,	
double	alpha,	
UInt16	method,	
UInt16	retType,	
out doubl	e retVal	

Calculates the test stats, p-value or critical value of the correlation test.

Returns

status code of the operation

Return values

NDK_SUCCESS Operation successful

Parameters

- [in] **pData1** is the first univariate time series data (a one dimensional array).
- [in] **pData2** is the second univariate time series data (a one dimensional array).
- [in] **nSize** is the number of observations in X (or Y).
- [in] **nLag** is the lag order (e.g. k=0 (no lag), k=1 (1st lag), etc.).
- [in] target is the assumed correlation value. If missing, a default of zero is assumed.
- [in] **alpha** is the statistical significance level. If missing, a default of 5% is assumed.
- [in] **method** is the desired correlation coefficient (1=Pearson (default), 2=Spearman, 3=Kendall). If missing, a Pearson coefficient is assumed.
- [in] **retType**is a switch to select the return output:

Method	Value	Description
TEST_PVALUE	1	P-Value
TEST_SCORE	2	Test statistics (aka score)
TEST_CRITICALVALUE	3	Critical value.
is the calculated test static	ation	

[out] retVal is the calculated test statistics.

Remarks

- 1. The XCF test hypothesis: $[H_{0}: rho_{x,y}=0] [H_{1}: rho_{x,y} neq 0]$ Where:
 - \(H_{0}\) is the null hypothesis (\$\hat\rho\$ is not different from zero)
 - \(H_{1}\) is the alternate hypothesis (\(\hat\rho\) is statistically significant)
 - \(\rho_{x,y}\) is the correlation factor between population X and Y
- 2. The time series is homogeneous or equally spaced.
- 3. The significance level (i.e. alpha) is only needed for calculating the test critical value.
- 4. The time series may include missing values (NaN) at either end.
- 5. This is a two-tails (sides) test, so the computed p-value should be compared with half of the significance level (\(\alpha\)).

Exceptions

Exception Type	Condition
None	N/A

Requirements

Namespace	NumXLAPI
Class	SFSDK
Scope	Public

NumXLAPI.DLL
`

References

Hull, John C.; Options, Futures and Other Derivatives Financial Times/ Prentice Hall (2011), ISBN 978-0132777421

Hans-Peter Deutsch; , Derivatives and Internal Models, Palgrave Macmillan (2002), ISBN 0333977068 Hamilton, J .D.; Time Series Analysis , Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]