NDK_XCF

Last Modified on 04/15/2016 11:08 am CDT

- C/C++
- .Net

Calculates the cross-correlation function between two time series.

Returns

status code of the operation

Return values

NDK_SUCCESSOperation successful

NDK_FAILED Operation unsuccessful. See <u>Macros</u> for full list.

Parameters

- [in] Y is the second univariate time series data (a one dimensional array).
- [in] **N** is the number of observations in X.
- [in] K is the lag order (e.g. 0=no lag, 1=1st lag, etc.) to use with the second time series input (X). If missing, a default lag order of zero (i.e. no-lag) is assumed.
- [in] **method** is the algorithm/method to use for calculating the correlation (see notes below)
- [in] retType is a switch to select the return output (1 = correlation value(default), 2 = std error).

 $[{\tt out}] {\tt retVal}$ is the calculated value of this function.

Remarks

- 1. The time series is homogeneous or equally spaced.
- 2. The two time series must be identical in size.
- 3. The NDK_XCF functions supports the following methods:

Method	Value	Description
XCF_PEARSON	1	Pearson
XCF_SPEARMA	N 2	Spearman
XCF_KENDALL	3	Kendall

3. The Pearson correlation, (r_{xy}) , is defined as follows:

 $\label{eq:sum_i=1}^N(x_i-\bar\{x\})(y_i-\bar\{y\})}{\sqrt}(sqrt\{sum_i=1\}^N(x_i-\bar\{x\})^2\times(sum_i=1)^N(y_i-\bar\{y\})^2})], where:$

- \(\bar{x}\) is the sample average of time series X.
- \(\bar{y}\) is the sample average of time series Y.
- \(x_i \in X\) is a value from the first input time series data.
- \(y_i \in Y\) is a value from the second input time series data.
- \(N\) is the number of pairs \(\left (x_i,y_i \right)\) that do not contain a missing observation.

Requirements

Header	SFSDK.H
Library	SFSDK.LIB
DLL	SFSDK.DLL

Examples

int NDK_XCF(doub	le[] pData1,
doub	le[] pData2,
UIntP	rtr nSize,
UIntP	rtr nLag,
short	nMethod
short	retType,
ref do	ouble retVal
)	

Namespace: NumXLAPI Class: SFSDK Scope: Public Lifetime: Static

Calculates the cross-correlation function between two time series.

Return Value

a value from NDK_RETCODE enumeration for the status of the call.

NDK_SUCCESS operation successful Error Error Code

Parameters

- [in] **pData1** is the first univariate time series data (a one dimensional array).
- [in] **pData2** is the second univariate time series data (a one dimensional array).
- [in] **nSize** is the number of observations in pData1.
- [in] nLag is the lag order (e.g. 0=no lag, 1=1st lag, etc.) to use with the second time series input (X). If missing, a default lag order of zero (i.e. no-lag) is assumed.
- [in] **nMethod**is the algorithm/method to use for calculating the correlation (see notes below)
- [in] retType is a switch to select the return output (1 = correlation value(default), 2 = std error).
- [out] retVal is the calculated value of this function.

Remarks

- 1. The time series is homogeneous or equally spaced.
- 2. The two time series must be identical in size.
- 3. The NDK_XCF functions supports the following methods:

Method	Value	Description
XCF_PEARSON	1	Pearson
XCF_SPEARMAN	2	Spearman
XCF KENDALL	3	Kendall

3. The Pearson correlation, (r_{xy}) , is defined as follows:

 $\[i=1]^N(x_i-bar\{y\})\]\[sqrt\{sum_{i=1}^N(x_i-bar\{y\})\]$

```
bar{x})^2\times\sum_{i=1}^N(y_i-bar{y})^2}],
```

where:

- \(\bar{x}\) is the sample average of time series X.
- \(\bar{y}\) is the sample average of time series Y.
- \(x_i \in X\) is a value from the first input time series data.
- \(y_i \in Y\) is a value from the second input time series data.
- (N) is the number of pairs $((left (x_i,y_i \ b)))$ that do not contain a missing observation.

Examples

References

Hull, John C.; Options, Futures and Other DerivativesFinancial Times/ Prentice Hall (2011), ISBN 978-0132777421

See Also

[template("related")]