NDK_WNTEST

Last Modified on 07/06/2016 12:24 pm CDT

- C/C++
- .Net

```
int __stdcall NDK_WNTEST(double * X,
size_t N,
size_t K,
double alpha,
WORD method,
WORD retType,
double * retVal
)
```

Computes the p-value of the statistical portmanteau test (i.e. whether any of a group of autocorrelations of a time series are different from zero).

Returns

status code of the operation

Return values

NDK_SUCCESS Operation successful

NDK_FAILED Operation unsuccessful. See <u>Macros</u> for full list.

Parameters

[in] **X** is the univariate time series data (a one dimensional array).

- [in] \mathbf{N} is the number of observations in X.
- [in] **K** is the lag order (e.g. k=0 (no lag), k=1 (1st lag), etc.).
- [in] **alpha** is the statistical significance level. If missing, a default of 5% is assumed.
- [in] **method** is the statistical test to perform (1=Ljung-Box).
- [in] **retType**is a switch to select the return output:

Method	Value	Description
TEST_PVALUE	1	P-Value
TEST_SCORE	2	Test statistics (aka score)
TEST_CRITICALVALUE	E 3	Critical value.

[out] retVal is the calculated test statistics.

Remarks

- 1. The time series is homogeneous or equally spaced.
- 2. The time series may include missing values (NaN) at either end.
- 3. The test hypothesis for white-noise: $[H_{0}: rho_{2}=...=rho_{m}=0] [H_{1}: exists rho_{k}neq 0] [1/leq k leq m] Where:$
 - (H_{o}) is the null hypothesis.

- $\circ \ (H_{1}) is the alternate hypothesis.$
- $\circ\ \\$ where $k\$ is the population autocorrelation function for lag k
- \(m\) is the maximum number of lags included in the white-noise test.
- 4. The Ljung Box test modified \(Q^*(m)\) statistic is computed as: \[Q^*
 - =T(T+2) $sum_{j=1}^{m}\frac_{\lambda_{1}}^{J}^{J}.$ Where:
 - \(m\) is the maximum number of lags included in the test.
 - \(\hat\rho_j\) is the sample autocorrelation at lag j.
 - \(T\) is the number of non-missing values in the data sample.
- 5. The Ljung Box test modified \(Q^*\) statistic has an asymptotic chi-square distribution with \ (m\) degrees of freedom and can be used to test the null hypothesis that the time series is not serially correlated. \[Q^*(m) \sim \chi_{\nu=m}^2()\] Where:
 - \(\chi_{\nu}^2()\) is the Chi-square probability distribution function.
 - \(\nu\) is the degrees of freedom for the Chi-square distribution.
- 6. The Ljung Box test is a suitable test for all sample sizes including small ones.
- 7. This is one-side (i.e. one-tail) test, so the computed p-value should be compared with the whole significance level (\$\alpha\$).
- 8. In practice, the selection of \(m\) may affect the performance of the \(Q(m)\) statistic. Several values of m are often used. Simulation studies suggest that the choice of \(m\approx \ln(T)\) provides better power performance.

Requirements

Header	SFSDK.H
Library	SFSDK.LIB
DLL	SFSDK.DLL

Examples

int NDK_WNTEST(double[]	pData,
UIntPtr	nSize,
int	nLag,
double	alpha,
UInt16	argMethod,
UInt16	retType,

Namespace: NumXLAPI Class: SFSDK Scope: Public Lifetime: Static

out double retVal

Computes the p-value of the statistical portmanteau test (i.e. whether any of a group of autocorrelations of a time series are different from zero).

Returns

status code of the operation

)

Return values

NDK_SUCCESS Operation successfulNDK_FAILEDOperation unsuccessful. See Macros for full list.

Parameters

[in]	pData	is the univariate time series data (a one dimensional array).		
[in]	nSize	is the number of observations in pData.		
[in]	nLag	is the lag order (e.g. k=0 (no lag), k=1 (1st lag), etc.).		
[in]	alpha	is the statistical significance level. If missing, a default of 5% is assumed.		
[in] argMethod is the statistical test to perform (1=Ljung-Box).				
[in]	retType	is a switch to select the return output:		
		Method	Value	Description
		TEST_PVALUE	1	P-Value
		TEST_SCORE	2	Test statistics (aka score)
		TEST_CRITICALVALUE	3	Critical value.

[out]retVal

is the calculated test statistics.

Remarks

- 1. The time series is homogeneous or equally spaced.
- 2. The time series may include missing values (NaN) at either end.
- 3. The test hypothesis for white-noise: $[H_{0}: \n_{1}=\n_{2}=...=\n_{m}=0] [H_{1}: \x is \n_{k} neg 0] [1\leg k \leg m] Where:$
 - \(H_{0}) is the null hypothesis.
 - \(H_{1}\) is the alternate hypothesis.
 - $\circ\ \\$ o $\$ he population autocorrelation function for lag k
 - \(m\) is the maximum number of lags included in the white-noise test.
- 4. The Ljung Box test modified \(Q^*(m)\) statistic is computed as: \[Q^*
 - =T(T+2)\sum_{j=1}^{m}\frac{\hat\rho_{j}^2}{T-I}) Where:
 - \(m\) is the maximum number of lags included in the test.
 - \(\hat\rho_j\) is the sample autocorrelation at lag j.
 - (T) is the number of non-missing values in the data sample.
- 5. The Ljung Box test modified \(Q^*\) statistic has an asymptotic chi-square distribution with \ (m\) degrees of freedom and can be used to test the null hypothesis that the time series is not serially correlated. \[Q^*(m) \sim \chi_{\nu=m}^2()\] Where:

- \(\chi_{\nu}^2()\) is the Chi-square probability distribution function.
- \(\nu\) is the degrees of freedom for the Chi-square distribution.
- 6. The Ljung Box test is a suitable test for all sample sizes including small ones.
- 7. This is one-side (i.e. one-tail) test, so the computed p-value should be compared with the whole significance level (\$\alpha\$).
- 8. In practice, the selection of \(m\) may affect the performance of the \(Q(m)\) statistic. Several values of m are often used. Simulation studies suggest that the choice of \(m\approx \ln(T)\) provides better power performance.

6. Special cases: By definition, \(\hat{\rho}(0) \equiv 1.0\)

Exceptions

Exception Type	Condition
None	N/A

Requirements

Namespace	NumXLAPI
Class	SFSDK
Scope	Public
Lifetime	Static
Package	NumXLAPI.DLL

Examples

References

Hull, John C.; Options, Futures and Other Derivatives Financial Times/ Prentice Hall (2011), ISBN 978-0132777421

Hans-Peter Deutsch; , Derivatives and Internal Models, Palgrave Macmillan (2002), ISBN 0333977068 Hamilton, J .D.; Time Series Analysis , Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]