NDK STDEVTEST

Last Modified on 07/06/2016 12:22 pm CDT

- C/C++
- .Net

Calculates the p-value of the statistical test for the population standard deviation.

Returns

status code of the operation

Return values

NDK_SUCCESS Operation successful

NDK_FAILED Operation unsuccessful. See Macros for full list.

Parameters

[in] **X** is the sample data (a one dimensional array).

 $\mbox{ is the number of observations in } X.$

[in] target is the assumed standard deviation value. If missing, a default of one is assumed

[in] **alpha** is the statistical significance level. If missing, a default of 5% is assumed.

[in] **method** is the statistical test to perform (1=parametric).

[in] **retType**is a switch to select the return output:

Method	Value	Description
TEST_PVALUE	1	P-Value
TEST_SCORE	2	Test statistics (aka score)
TEST_CRITICALVALUE	3	Critical value.

[out] retVal is the calculated test statistics.

Remarks

- 1. The data sample may include missing values (NaN).
- 2. The test hypothesis for the population standard deviation: $[H_{0}: \simeq \alpha_0] [H_{1}: \simeq \alpha_0]$ Where:
 - \(H_{o}\) is the null hypothesis.
 - \(H_{1}\) is the alternate hypothesis.
 - \(\sigma o\) is the assumed population standard deviation.

- \(\sigma\) is the actual (real) population standard deviation.
- 3. For the case in which the underlying population distribution is normal, the sample standard deviation has a Chi-square sampling distribution: \[\hat \sigma^2 \sim \chi \nu=T-1\^2 \] Where:
 - \(\hat \sigma^2 \) is the sample variance.
 - \(\chi_{\nu}^2()\) is the Chi-square probability distribution function.
 - \(\nu\) is the degrees of freedom for the Chi-square distribution.
 - \(T\) is the number of non-missing values in the sample data.
- 4. Using a given data sample, the sample data standard deviation is computed as: $\[\cdot \]$ \sqrt{\frac{\sum_{t=1}^T(x_t-\bar x)^2}{T-1}}\] Where:
 - \(\hat \sigma(x)\) is the sample standard deviation.
 - \(\bar x\) is the sample average.
 - \(T\) is the number of non-missing values in the data sample.
- 5. The underlying population distribution is assumed normal (Gaussian).
- 6. This is a two-sides (i.e. two-tails) test, so the computed p-value should be compared with half of the significance level (\(\alpha/2\)).

Requirements

Header	SFSDK.H
Library	SFSDK.LIB
DLL	SFSDK.DLL

```
int NDK_STDEVTEST(double[]
                                                                   Namespace: NumXLAPI
                              pData,
                                                                        Class: SFSDK
                   UIntPtr
                              nSize,
                   double target,
                                                                       Scope: Public
                                                                     Lifetime: Static
                   double
                            alpha,
                   UInt16
                              argMethod,
                   UInt16
                              retType,
                   out double retVal
                   )
```

Calculates the p-value of the statistical test for the population standard deviation.

Returns

status code of the operation

Return values

NDK_SUCCESS Operation successful

NDK_FAILED Operation unsuccessful. See Macros for full list.

Parameters

[in]	pData	is the sample data (a one dimensional array).	
[in]	nSize	is the number of observations in pData.	
[in]	target	is the assumed standard deviation value. If missing, a default of one is	
		assumed	
[in]	alpha	is the statistical significance level. If missing, a default of 5% is assumed.	
[in]	[in] argMethodis the statistical test to perform (1=parametric).		

[in] **retType** is a switch to select the return output:

Method	Value	Description
TEST_PVALUE	1	P-Value
TEST_SCORE	2	Test statistics (aka score)
TEST_CRITICALVALUE	3	Critical value.
the calculated test statistics		

[out]retVal

Remarks

- 1. The data sample may include missing values (NaN).
- 2. The test hypothesis for the population standard deviation: \[H_{o}: \sigma = \sigma_o\] \[H_{1}: \sigma \neq \sigma o\] Where:
 - ∘ \(H_{o}\) is the null hypothesis.
 - \(H_{1}\) is the alternate hypothesis.
 - \(\sigma_o\) is the assumed population standard deviation.
 - \(\sigma\) is the actual (real) population standard deviation.
- 3. For the case in which the underlying population distribution is normal, the sample standard deviation has a Chi-square sampling distribution: \[\hat \sigma^2 \sim \chi_{\nu=T-1}^2 \] Where:
 - \(\hat \sigma^2 \) is the sample variance.
 - \(\chi_{\nu}^2()\) is the Chi-square probability distribution function.
 - \(\nu\) is the degrees of freedom for the Chi-square distribution.
 - \(T\) is the number of non-missing values in the sample data.
- 4. Using a given data sample, the sample data standard deviation is computed as: \[\hat \sigma(x) = $\sqrt{\frac{t=1}^T(x_t-\bar x)^2}{T-1}}\$ Where:
 - \(\hat \sigma(x)\) is the sample standard deviation.
 - \(\bar x\) is the sample average.
 - \(T\) is the number of non-missing values in the data sample.
- 5. The underlying population distribution is assumed normal (Gaussian).
- 6. This is a two-sides (i.e. two-tails) test, so the computed p-value should be compared with half of the significance level (\(\alpha/2\)).

Exceptions

Exception Type	Condition
None	N/A

Requirements

Namespace	NumXLAPI
Class	SFSDK
Scope	Public
Lifetime	Static
Package	NumXLAPI.DLL

Examples

References

Hamilton, J.D.; Time Series Analysis , Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]