NDK_SSE

Last Modified on 04/15/2016 12:02 pm CDT

- C/C++
- .Net

```
int __stdcall NDK_SSE(double * X,
double * Y,
size_t N,
double * retVal
)
```

Calculates the sum of the squared errors of the prediction function.

Returns

status code of the operation

Return values

NDK_SUCCESSOperation successfulNDK_FAILEDOperation unsuccessful. See Macros for full list.

See Also

NDK_XCF()

Parameters

- [in] **X** is the original (eventual outcomes) time series sample data (a one dimensional array).
- [in] Y is the forecasted time series data (a one dimensional array).
- [in] \mathbf{N} is the number of observations in X.

[out] retValis the calculated sum of squared errors.

Remarks

- 1. The time series is homogeneous or equally spaced.
- 2. The two time series must be identical in size.

3. A missing value (e.g. (x_k) or $((hat x_k))$ in either time series will exclude the data point $((x_k,hat x_k))$ from the SSE.

4. The sum of the squared errors, \(\mathrm{SSE}\), is defined as follows:

 $\label{eq:second} \label{eq:second} $$ \sum_{x_i \in \mathbb{N} \left[x_i - hat x_i \right]^2}, $$ (x_i - hat x_i)^2], $$ (x_i - hat x_i)^2],$

where:

- $((x_i))$ is the actual observations time series.
- \(\{\hat x_i\}\) is the estimated or forecasted time series.

Requirements

Header	SFSDK.H
Library	SFSDK.LIB
DLL	SFSDK.DLL

Examples

int NDK_SSE(double	e[] pData1,
double	e[] pData2,
UIntPt	r nSize,
ref do	uble retVal
)	

Namespace: NumXLAPI Class: SFSDK Scope: Public Lifetime: Static

Calculates the sum of the squared errors of the prediction function.

Return Value

a value from NDK_RETCODE enumeration for the status of the call.

NDK_SUCCESS operation successful

Error Error Code

Parameters

- [in] **pData1**is the original (eventual outcomes) time series sample data (a one dimensional array).
- [in] **pData2**is the forecasted time series data (a one dimensional array).
- [in] **nSize** is the number of observations in pData1.
- [out] retVal is the calculated sum of squared errors.

Remarks

- 1. The time series is homogeneous or equally spaced.
- 2. The two time series must be identical in size.

3. A missing value (e.g. (x_k) or $((hat x_k))$ in either time series will exclude the data point $((x_k,hat x_k))$ from the SSE.

4. The sum of the squared errors, \(\mathrm{SSE}\), is defined as follows:

 $\label{eq:sum_i=1}^N \left[x_i- \right] ^2 \right], where:$

- \(\{x_i\}\) is the actual observations time series.
- \(\{\hat x_i\}\) is the estimated or forecasted time series.

Exceptions

Exception Type	Condition
None	N/A

Requirements

Namespace	NumXLAPI
Class	SFSDK
Scope	Public
Lifetime	Static
Package	NumXLAPI.DLL

Examples

References

Hull, John C.; Options, Futures and Other DerivativesFinancial Times/ Prentice Hall (2011), ISBN 978-0132777421

See Also

[template("related")]