NDK_SKEWTEST

Last Modified on 04/20/2016 1:18 pm CDT

- C/C++
- .Net

```
int __stdcall NDK_SKEWTEST(double * X,
size_t N,
double alpha,
WORD method,
WORD retType,
double * retVal
)
```

Calculates the p-value of the statistical test for the population skew (i.e. 3rd moment).

Returns

status code of the operation

Return values

NDK_SUCCESSOperation successfulNDK_FAILEDOperation unsuccessful. See Macros for full list.

Parameters

- [in] **X** is the sample data (a one dimensional array).
- [in] **N** is the number of observations in X.
- [in] **alpha** is the statistical significance level. If missing, the default of 5% is assumed.
- [in] **method** is the statistical test to perform (1=parametric).
- [in] **retType**is a switch to select the return output:

Method	Value	Description
TEST_PVALUE	1	P-Value
TEST_SCORE	2	Test statistics (aka score)
TEST_CRITICALVALUE	3	Critical value.
is the calculated test statistics		

 $[\texttt{out}] \textbf{retVal} \quad \text{is the calculated test statistics.}$

Remarks

- 1. The data sample may include missing values (NaN).
- 2. The test hypothesis for the population distribution skewness: $[H_{0}: S=0] [H_{1}: S \in 0]$ Where:
 - $\circ \ (H_{o}) is the null hypothesis.$
 - (H_{1}) is the alternate hypothesis.
 - $\circ \ \(S\)$ is the population skew.
- 3. For the case in which the underlying population distribution is normal, the sample skew also has a

normal sampling distribution: \[\hat S \sim N(0,\frac{6}{T}) \] Where:

- \(\hat S\) is the sample skew (i.e. 3rd moment).
- \(T\) is the number of non-missing values in the data sample.
- (N(.)) is the normal (i.e. Gaussian) probability distribution function.
- 4. The sample data skew is calculated as: \[\hat S(x)= \frac{\sum_{t=1}^T(x_t-\bar x)^3}{(T-1)\times \hat \sigma^3}\] Where:
 - \(\hat S\) is the sample skew (i.e. 3rd moment)
 - $\circ \ (x_i)$ is the i-th non-missing value in the data sample.
 - $\circ\ \ (T\)$ is the number of non-missing values in the data sample.
 - \(\hat \sigma\) is the data sample standard deviation.
- 5. In the case where the population skew is not zero, the mean is farther out than the median in the long tail. The underlying distribution is referred to as skewed, unbalanced, or lopsided.
- 6. The underlying population distribution is assumed normal (Gaussian).
- 7. This is a two-sides (i.e. two-tails) test, so the computed p-value should be compared with half of the significance level (\(\alpha/2\)).

Requirements

Header	SFSDK.H
Library	SFSDK.LIB
DLL	SFSDK.DLL

Examples

int NDK_SKEWTEST(double[]	pData,
UIntPtr	nSize,
double	alpha,
UInt16	argMethod,
UInt16	retType,
out double	retVal
)	

Namespace: NumXLAPI Class: SFSDK Scope: Public Lifetime: Static

Calculates the p-value of the statistical test for the population skew (i.e. 3rd moment).

Returns

status code of the operation

Return values

NDK_SUCCESSOperation successfulNDK_FAILEDOperation unsuccessful. See Macros for full list.

Parameters

- [in] **pData** is the sample data (a one dimensional array).
- [in] **nSize** is the number of observations in pData.
- [in] **alpha** is the statistical significance level. If missing, the default of 5% is assumed.
- [in] **argMethod**is the statistical test to perform (1=parametric).
- [in] **retType** is a switch to select the return output:

	Method	Value	Description
	TEST_PVALUE	1	P-Value
	TEST_SCORE	2	Test statistics (aka score)
	TEST_CRITICALVALUE	3	Critical value.
[out]retVal	is the calculated test statistics.		

Remarks

- 1. The data sample may include missing values (NaN).
- The test hypothesis for the population distribution skewness: \[H_{0}: S=0\] \[H_{1}: S\neq 0\] Where:
 - $\circ (H_{o}) is the null hypothesis.$
 - (H_{1}) is the alternate hypothesis.
 - \(S\) is the population skew.
- 3. For the case in which the underlying population distribution is normal, the sample skew also has a normal sampling distribution: \[\hat S \sim N(0,\frac{6}{T}) \] Where:
 - \(\hat S\) is the sample skew (i.e. 3rd moment).
 - $\circ \ (T \)$ is the number of non-missing values in the data sample.
 - $\circ\ \(N(.)\)$ is the normal (i.e. Gaussian) probability distribution function.
- 4. The sample data skew is calculated as: \[\hat S(x)= \frac{\sum_{t=1}^T(x_t-\bar x)^3}{(T-1)\times \hat \sigma^3}\] Where:
 - \(\hat S\) is the sample skew (i.e. 3rd moment)
 - $\circ \ (x_i)$ is the i-th non-missing value in the data sample.
 - $\circ\ \mbox{(T\)}$ is the number of non-missing values in the data sample.
 - \(\hat \sigma\) is the data sample standard deviation.
- 5. In the case where the population skew is not zero, the mean is farther out than the median in the long tail. The underlying distribution is referred to as skewed, unbalanced, or lopsided.
- 6. The underlying population distribution is assumed normal (Gaussian).
- This is a two-sides (i.e. two-tails) test, so the computed p-value should be compared with half of the significance level (\(\alpha/2\)).

Exceptions

Exception Type	Condition
None	N/A

Requirements

Namespace	NumXLAPI
Class	SFSDK
Scope	Public
Lifetime	Static
Package	NumXLAPI.DLL

Examples

References

Hamilton, J .D.; Time Series Analysis , Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]