NDK_SARIMA_PARAM

Last Modified on 07/08/2016 12:18 pm CDT

- C/C++
- .Net

```
int stdcall NDK SARIMA PARAM(double *
                                                        pData,
                                 size t
                                                        nSize,
                                 double *
                                                        mean,
                                 double *
                                                        sigma,
                                 WORD
                                                        nIntegral,
                                 double *
                                                        phis,
                                 size t
                                                        p,
                                 double *
                                                        thetas,
                                 size t
                                                        q,
                                 WORD
                                                        nSIntegral,
                                 WORD
                                                        nSPeriod,
                                 double *
                                                        sPhis,
                                 size t
                                                        sP,
                                 double *
                                                        sThetas,
                                 size_t
                                                        sQ,
                                 MODEL_RETVAL_FUNC retType,
                                 size_t
                                                        maxIter
                                )
```

Returns an array of cells for the initial (non-optimal), optimal or standard errors of the model's parameters.

Returns

status code of the operation

Return values

NDK_SUCCESS Operation successful

NDK_FAILED Operation unsuccessful. See Macros for full list.

Parameters

[in]	pData	is the univariate time series data (a one dimensional array).
[in]	nSize	is the number of observations in pData.
[in,out	mean	is the mean of the ARMA process
[in,out	sigma	is the standard deviation of the model's residuals/innovations.
[in]	nIntegral	is the non-seasonal difference order
[in,out	phis	are the coefficients's values of the non-seasonal AR component
[in]	р	is the order of the non-seasonal AR component
[in,out	thetas	are the coefficients's values of the non-seasonal MA component

[in] **q** is the order of the non-seasonal MA component

[in] nSIntegralis the seasonal difference [in] nSPeriod is the number of observations per one period (e.g. 12=Annual, 4=Quarter) [in,out]sPhis are the coefficients's values of the seasonal AR component sP [in] is the order of the seasonal AR component [in, out] sThetas are the coefficients's values of the seasonal MA component [in] sQ is the order of the seasonal MA component [in] retType is a switch to select the type of value returned: 1= Quick Guess, 2=Calibrated, 3= Std. Errors Order Description 1 Quick guess (non-optimal) of parameters values (default) 2 Calibrated (optimal) values for the model's parameters 3 Standard error of the parameters' values [in] is the maximum number of iterations used to calibrate the model. If missing maxIter or less than 100, the default maximum of 100 is assumed.

Remarks

- 1. The underlying model is described here.
- 2. The time series is homogeneous or equally spaced
- 3. The time series may include missing values (e.g. NaN) at either end.
- 4. The long-run mean argument (mean) can take any value or be omitted, in which case a zero value is assumed.
- 5. The residuals/innovations standard deviation (sigma) must be greater than zero.
- 6. For the input argument phi (parameters of the non-seasonal AR component):
 - The input argument is optional and can be omitted, in which case no non-seasonal AR component is included.
 - The order of the parameters starts with the lowest lag.
 - One or more parameters may have missing values or error codes (i.e. #NUM!, #VALUE!, etc.).
 - The order of the non-seasonal AR component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
- 7. For the input argument theta (parameters of the non-seasonal MA component):
 - The input argument is optional and can be omitted, in which case no non-seasonal MA component is included.
 - The order of the parameters starts with the lowest lag.
 - One or more values in the input argument can be missing or an error code (i.e. #NUM!, #VALUE!, etc.).
 - The order of the non-seasonal MA component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
- 8. For the input argument sPhi (parameters of the seasonal AR component):
 - The input argument is optional and can be omitted, in which case no seasonal AR component is included.
 - The order of the parameters starts with the lowest lag.
 - One or more parameters may have missing values or error codes (i.e. #NUM!, #VALUE!, etc.).
 - The order of the seasonal AR component model is solely determined by the order of the last

value in the array with a numeric value (vs. missing or error).

- 9. For the input argument sTheta (parameters of the seasonal MA component):
 - The input argument is optional and can be omitted, in which case no seasonal MA component is included.
 - The order of the parameters starts with the lowest lag.
 - One or more values in the input argument can be missing or an error code (i.e. #NUM!, #VALUE!, etc.).
 - The order of the seasonal MA component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
- 10. The non-seasonal integration order d is optional and can be omitted, in which case d is assumed to be zero.
- 11. The seasonal integration order sD is optional and can be omitted, in which case sD is assumed to be zero.
- 12. The season length s is optional and can be omitted, in which case s is assumed to be zero (i.e. plain ARIMA).

Requirements

Header	SFSDK.H
Library	SFSDK.LIB
DLL	SFSDK.DLL

Examples

int NDK SARIMA PARAM(double[] pData, **UIntPtr** nSize, ref double mean, ref double sigma, short nIntegral, double[] phis, **UIntPtr** p, double[] thetas, **UIntPtr** q, short nSIntegral, double[] sPhis,

Namespace: NumXLAPI
Class: SFSDK

Scope: Public
Lifetime: Static

```
UIntPtr sP,
double[] sThetas,
UIntPtr sQ,
MODEL_RETVAL_FUNC retType,
UIntPtr maxIter
)
```

Returns an array of cells for the initial (non-optimal), optimal or standard errors of the model's parameters.

Return Value

a value from NDK_RETCODE enumeration for the status of the call.

```
NDK_SUCCESS operation successful
```

Error Code

Parameters

[in] pData	is the univariate time series data (a one dimensional array).			
[in] nSize	is the number of observations in pData.			
[in,out]mean	is the mean of the ARMA process			
[in,out]sigma	is the standard deviation of the model's residuals/innovations.			
[in] nIntegral	is the non-seasonal difference order			
[in,out]phis	are the coefficients's values of the non-seasonal AR component			
[in] p	is the order of the non-seasonal AR component			
[in,out]thetas	are the coefficients's values of the non-seasonal MA component			
[in] q	is the order of the non-seasonal MA component			
[in] nSIntegra	lis the seasonal difference			
[in,out]sPhis	are the coefficients's values of the seasonal AR component			
[in] sP	is the order of the seasonal AR component			
[in,out]sThetas	are the coefficients's values of the seasonal MA component			
[in] sQ	is the order of the seasonal MA component			
[in] retType	is a switch to select the type of value returned: 1= Quick Guess,			
	2=Calibrated, 3= Std. Errors			
	Order Description			
	1 Quick guess (non-optimal) of parameters values (default)			
	2 Calibrated (optimal) values for the model's parameters			
	3 Standard error of the parameters' values			
[in] maxIter	is the maximum number of iterations used to calibrate the model. If missing			
	or less than 100, the default maximum of 100 is assumed.			

Remarks

- 1. The underlying model is described here.
- 2. The time series is homogeneous or equally spaced
- 3. The time series may include missing values (e.g. NaN) at either end.
- 4. The long-run mean argument (mean) can take any value or be omitted, in which case a zero value

is assumed.

- 5. The residuals/innovations standard deviation (sigma) must be greater than zero.
- 6. For the input argument phi (parameters of the non-seasonal AR component):
 - The input argument is optional and can be omitted, in which case no non-seasonal AR component is included.
 - The order of the parameters starts with the lowest lag.
 - One or more parameters may have missing values or error codes (i.e. #NUM!, #VALUE!, etc.).
 - The order of the non-seasonal AR component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
- 7. For the input argument theta (parameters of the non-seasonal MA component):
 - The input argument is optional and can be omitted, in which case no non-seasonal MA component is included.
 - The order of the parameters starts with the lowest lag.
 - One or more values in the input argument can be missing or an error code (i.e. #NUM!, #VALUE!, etc.).
 - The order of the non-seasonal MA component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
- 8. For the input argument sPhi (parameters of the seasonal AR component):
 - The input argument is optional and can be omitted, in which case no seasonal AR component is included.
 - The order of the parameters starts with the lowest lag.
 - One or more parameters may have missing values or error codes (i.e. #NUM!, #VALUE!, etc.).
 - The order of the seasonal AR component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
- 9. For the input argument sTheta (parameters of the seasonal MA component):
 - The input argument is optional and can be omitted, in which case no seasonal MA component is included.
 - The order of the parameters starts with the lowest lag.
 - One or more values in the input argument can be missing or an error code (i.e. #NUM!, #VALUE!, etc.).
 - The order of the seasonal MA component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
- 10. The non-seasonal integration order d is optional and can be omitted, in which case d is assumed to be zero.
- 11. The seasonal integration order sD is optional and can be omitted, in which case sD is assumed to be zero.
- 12. The season length s is optional and can be omitted, in which case s is assumed to be zero (i.e. plain ARIMA).

Exceptions

Exception Type C	ondition
------------------	----------

None	N/A	

Requirements

Namespace	NumXLAPI
Class	SFSDK
Scope	Public
Lifetime	Static
Package	NumXLAPI.DLL

Examples

Reference	CE	28
-----------	----	----

Hamilton, J.D.; Time Series Analysis, Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]