NDK_SARIMA_FORE

Last Modified on 07/08/2016 12:20 pm CDT

- C/C++
- .Net

intstdcall NDK_SARIMA_FOR	E(double *	pData,
	size_t	nSize,
	double	mean,
	double	sigma,
	WORD	nIntegral,
	double *	phis,
	size_t	р,
	double *	thetas,
	size_t	q,
	WORD	nSIntegral,
	WORD	nSPeriod,
	double *	sPhis,
	size_t	sP,
	double *	sThetas,
	size_t	sQ,
	size_t	nStep,
	FORECAST_RETVAL_FUNC	CretType,
	double	alpha,
	double *	retVal
)	

Calculates the out-of-sample forecast statistics.

Returns

status code of the operation

Return values

NDK_SUCCESSOperation successfulNDK_FAILEDOperation unsuccessful. See Macros for full list.

Parameters

[in]	pData	is the univariate time series data (a one dimensional array).
[in]	nSize	is the number of observations in pData.
[in]	mean	is the model mean (i.e. mu).
[in]	sigma	is the standard deviation of the model's residuals/innovations.
[in]	nIntegral	is the non-seasonal difference order
[in]	phis	are the coefficients's values of the non-seasonal AR component
[in]	р	is the order of the non-seasonal AR component
[in]	thetas	are the coefficients's values of the non-seasonal MA component

[in] q	is the order of the non-seasonal MA component		
[in] nSIntegral is the seasonal difference			
[in] nSPeriod	is the number of observations per one period (e.g. 12=Annual, 4=Quarter)		
[in] sPhis	are the coefficients's values of the seasonal AR component		
[in] sP	is the order of the seasonal AR component		
[in] sThetas	are the coefficients's values of the seasonal MA component		
[in] sQ	is the order of the seasonal MA component		
[in] nStep	is the forecast time/horizon (expressed in terms of steps beyond end of the		
	time series).		
[in] retType	is a switch to select the type of value returned		
	Order Description		
	1 Mean forecast value (default)		
	2 Forecast standard error (aka local volatility)		
	3 Volatility term structure		
	4 Lower limit of the forecast confidence interval		
	5 Upper limit of the forecast confidence interval		
[in] alpha	is the statistical significance level. If missing, a default of 5% is assumed.		
[out]retVal	al is the calculated forecast value		

Remarks

- 1. The underlying model is described here.
- 2. The time series is homogeneous or equally spaced
- 3. The time series may include missing values (e.g. NaN) at either end.
- 4. The long-run mean argument (mean) can take any value or be omitted, in which case a zero value is assumed.
- 5. The residuals/innovations standard deviation (sigma) must be greater than zero.
- 6. For the input argument phi (parameters of the non-seasonal AR component):
 - The input argument is optional and can be omitted, in which case no non-seasonal AR component is included.
 - The order of the parameters starts with the lowest lag.
 - The order of the non-seasonal AR component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
- 7. For the input argument theta (parameters of the non-seasonal MA component):
 - The input argument is optional and can be omitted, in which case no non-seasonal MA component is included.
 - The order of the parameters starts with the lowest lag.
 - The order of the non-seasonal MA component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
- 8. For the input argument sPhi (parameters of the seasonal AR component):
 - The input argument is optional and can be omitted, in which case no seasonal AR component is included.
 - The order of the parameters starts with the lowest lag.
 - The order of the seasonal AR component model is solely determined by the order of the last

value in the array with a numeric value (vs. missing or error).

- 9. For the input argument sTheta (parameters of the seasonal MA component):
 - The input argument is optional and can be omitted, in which case no seasonal MA component is included.
 - The order of the parameters starts with the lowest lag.
 - The order of the seasonal MA component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
- 10. The non-seasonal integration order d is optional and can be omitted, in which case d is assumed to be zero.
- 11. The seasonal integration order sD is optional and can be omitted, in which case sD is assumed to be zero.
- 12. The season length s is optional and can be omitted, in which case s is assumed to be zero (i.e. plain ARIMA).

Requirements

Header	SFSDK.H
Library	SFSDK.LIB
DLL	SFSDK.DLL

Examples

int NDK_SARIMA_FORE(d	ouble[]	pData,	Namespace: NumXLAPI
U	lintPtr	nSize,	Class: SFSDK
d	ouble	mean,	Scope: Public
d	ouble	sigma,	Lifetime: Static
S	hort	nIntegral,	
d	ouble[]	phis,	
U	lintPtr	p,	
d	ouble[]	thetas,	
U	lintPtr	q,	
S	hort	nSIntegral,	
d	ouble[]	sPhis,	
U	lintPtr	sP,	
d	ouble[]	sThetas,	

UIntPtr	sQ,
UIntPtr	nStep,
FORECAST_RETVAL_FUNC	retType,
double	alpha,
ref double	retVal

Calculates the out-of-sample forecast statistics.

Return Value

a value from NDK_RETCODE enumeration for the status of the call.

NDK_SUCCESS operation successful

Error Error Code

Parameters

[in]	pData	is the univariate time series data (a one dimensional array).		
[in]	nSize	is the number of observations in pData.		
[in]	mean	is the model mean (i.e. mu).		
[in]	sigma	is the standard deviation of the model's residuals/innovations.		
[in]	nIntegral	is the non-seasonal difference order		
[in]	phis	are the coefficients's values of the non-seasonal AR component		
[in]	р	is the order of the non-seasonal AR component		
[in]	thetas	are the coefficients's values of the non-seasonal MA component		
[in]	q	is the order of the non-seasonal MA component		
[in]	[in] nSIntegral is the seasonal difference			
[in]	sPhis	are the coefficients's values of the seasonal AR component		
[in]	sP	is the order of the seasonal AR component		
[in]	sThetas	are the coefficients's values of the seasonal MA component		
[in]	sQ	is the order of the seasonal MA component		
[in]	nStep	is the forecast time/horizon (expressed in terms of steps beyond end of the		
		time series).		
[in]	retType	retType is a switch to select the type of value returned		
		Order Description		
		1 Mean forecast value (default)		
		2 Forecast standard error (aka local volatility)		
		3 Volatility term structure		
		4 Lower limit of the forecast confidence interval		
		5 Upper limit of the forecast confidence interval		
[in]	alpha is the statistical significance level. If missing, a default of 5% is assumed.			
[out	[out] retVal is the calculated forecast value			

Remarks

- 1. The underlying model is described here.
- 2. The time series is homogeneous or equally spaced

- 3. The time series may include missing values (e.g. NaN) at either end.
- 4. The long-run mean argument (mean) can take any value or be omitted, in which case a zero value is assumed.
- 5. The residuals/innovations standard deviation (sigma) must be greater than zero.
- 6. For the input argument phi (parameters of the non-seasonal AR component):
 - The input argument is optional and can be omitted, in which case no non-seasonal AR component is included.
 - The order of the parameters starts with the lowest lag.
 - The order of the non-seasonal AR component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
- 7. For the input argument theta (parameters of the non-seasonal MA component):
 - The input argument is optional and can be omitted, in which case no non-seasonal MA component is included.
 - The order of the parameters starts with the lowest lag.
 - The order of the non-seasonal MA component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
- 8. For the input argument sPhi (parameters of the seasonal AR component):
 - The input argument is optional and can be omitted, in which case no seasonal AR component is included.
 - The order of the parameters starts with the lowest lag.
 - The order of the seasonal AR component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
- 9. For the input argument sTheta (parameters of the seasonal MA component):
 - The input argument is optional and can be omitted, in which case no seasonal MA component is included.
 - The order of the parameters starts with the lowest lag.
 - The order of the seasonal MA component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
- 10. The non-seasonal integration order d is optional and can be omitted, in which case d is assumed to be zero.
- 11. The seasonal integration order sD is optional and can be omitted, in which case sD is assumed to be zero.
- 12. The season length s is optional and can be omitted, in which case s is assumed to be zero (i.e. plain ARIMA).

Exceptions

Exception Type	Condition
None	N/A

Requirements

Namespace	NumXLAPI
Class	SFSDK
Scope	Public
Lifetime	Static
Package	NumXLAPI.DLL

Examples

References

Hamilton, J .D.; Time Series Analysis , Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]