NDK_PCR_PRFTest

Last Modified on 03/14/2016 11:39 am CDT

- C/C++
- <u>.Net</u>

```
int _stdcall NDK_PCR_PRFTest ( double ** X,
                 size_t
                          nXSize,
                 size t
                          nXVars,
                 double * Y,
                 size t nYSize,
                 double intercept,
                 LPBYTE mask1,
                          nMaskLen1,
                 size_t
                 LPBYTE mask2,
                 size t nMaskLen2,
                 double alpha,
                 WORD
                          nRetType,
                 double * retVal
                )
```

Returns an array of cells for the i-th principal component (or residuals).

Returns

status code of the operation

Return values

NDK_SUCCESS Operation successful

NDK_FAILED Operation unsuccessful. See Macros for full list.

Parameters

[in]	X	is the independent variables data matrix, such that each column represents one variable
[in]	nXSize	is the number of observations (i.e. rows) in X
[in]	nXVars	is the number of variables (i.e. columns) in X
[in]	Y	is the response or the dependent variable data array (one dimensional
		array)
[in]	nYSize	is the number of elements in Y
[in]	intercept	is the constant or the intercept value to fix (e.g. zero). If missing (NaN), an
		intercept will not be fixed and is computed normally

[in] mask1 is the boolean array to select a subset of the input variables in X. If missing (i.e. NULL), all variables in X are included.

[in] nMaskLen1 is the number of elements in mask1

[in] mask2 is the boolean array to select a subset of the input variables in X. If missing (i.e. NULL), all variables in X are included.

[in] nMaskLen2 is the number of elements in mask2

[in] **alpha** is the statistical significance of the test (i.e. alpha)

[in] **nRetType** is a switch to select the return output (1 = P-Value (default), 2 = Test

Stats, 3 = Critical Value.)

[out] retVal is the calculated test statistics/

Remarks

- 1. The underlying model is described here.
- 2. Model 1 must be a sub-model of Model 2. In other words, all variables included in Model 1 must be included in Model 2.
- 3. The coefficient of determination (i.e. \(R^2\)) increases in value as we add variables to the regression model, but we often wish to test whether the improvement in R square by adding those variables is statistically significant.
- 4. To do so, we developed an inclusion/exclusion test for those variables. First, let's start with a regression model with (K_1) variables: $[Y_t = \alpha + \beta_1 \times X_1 + \beta_1 \times X$
- 5. The test of hypothesis is as follows: $[H_0 : \beta_{K_1+1} = \beta_{K_1+2} = \beta_{K$
- 6. Using the change in the coefficient of determination (i.e. \(R^2\)) as we added new variables, we can calculate the test statistics: \[\mathrm{f}=\frac{(R^2_{f}-R^2_{f})^{1/2}}{(R^2_{f}-R^2_{f})^{1/2}} = (R^2_{f}-R^2_{f}-R^2_{f})^{1/2}

 $R^2 \{r\}/(K 2-K 1)\}\{(1-R^2 f)/(N-K 2-1)\}\sim \{K 2-K 1,N-K2-1\}\]$ Where:

- $\circ \ (R^2 \ f)$ is the (R^2) of the full model (with added variables).
- ∘ \(K 1\) is the number of variables in the reduced model.
- ∘ \(K 2\) is the number of variables in the full model.
- ∘ \(N\) is the number of observations in the sample data.
- 7. The sample data may include missing values.
- 8. Each column in the input matrix corresponds to a separate variable.
- 9. Each row in the input matrix corresponds to an observation.
- 10. Observations (i.e. row) with missing values in X or Y are removed.
- 11. The number of rows of the response variable (Y) must be equal to the number of rows of the explanatory variables (X).
- 12. The MLR ANOVA function is available starting with version 1.60 APACHE.

Requirements

References

Hamilton, J.D.; <u>Time Series Analysis</u>, Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; <u>Analysis of Financial Time Series</u> John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]