NDK_PCR_ANOVA

Last Modified on 03/14/2016 11:35 am CDT

- <u>C/C++</u>
- <u>.Net</u>

int _stdcall NDK_PCR_ANOVA (double **	Х,
	size_t	nXSize,
	size_t	nXVars,
	LPBYTE	mask,
	size_t	nMaskLen,
	double *	Υ,
	size_t	nYSize,
	double	intercept,
	WORD	nRetType,
	double *	retVal
)		

Returns an array of cells for the i-th principal component (or residuals).

Returns

status code of the operation

Return values

NDK_SUCCESS	Operation successful
NDK_FAILED	Operation unsuccessful. See \underline{Macros} for full list

Parameters

[in]	Χ	is the independent variables data matrix, such that each column represents	
		one variable	
[in]	nXSize	is the number of observations (i.e. rows) in X	
[in]	nXVars	is the number of variables (i.e. columns) in X	
[in]	mask	is the boolean array to select a subset of the input variables in X. If missing	
		(i.e. NULL), all variables in X are included.	
[in]	in] nMaskLen is the number of elements in mask		
[in]	Y	is the response or the dependent variable data array (one dimensional array)	
[in]	nYSize	is the number of elements in Y	
[in]	intercept	is the constant or the intercept value to fix (e.g. zero). If missing (NaN), an	
		intercept will not be fixed and is computed normally	

[in] **nRetType** is a switch to select the return output:

- 1. SSR (sum of squares of the regression)
- 2. SSE (sum of squares of the residuals)
- 3. SST (sum of squares of the dependent variable)
- 4. MSR (mean squares of the regression)
- 5. MSE (mean squares error or residuals)
- 6. F-stat (test score)
- 7. Significance F (P-value of the test)

```
[out] retVal is the calculated statistics ANOVA output.
```

Remarks

- 1. The underlying model is described **here**.
- 2. \[\mathbf{y} = \alpha + \beta_1 \times \mathbf{PC}_1 + \dots + \beta_p \times \mathbf{PC}_p\]
- 3. The regression ANOVA table examines the following hypothesis: \[\mathbf{H}_o: \beta_1 = \beta_2 = \dots = \beta_p = 0 \] \[\mathbf{H}_1: \exists \beta_i \neq 0, i \in \left[1,0 \right]\]
- 4. In other words, the regression ANOVA examines the probability that the regression does NOT explain the variation in \(\mathbf{y}\), i.e. that any fit is <u>due purely to chance</u>.
- 5. The MLR_ANOVA calculates the different values in the ANOVA tables as follows: $[\mathbf{SST}=\sum_{i=1}^N \left(i_i - \sum_{i=1}^2 \right)^2$
 - $\label{eq:sigmath} \label{eq:sigmath} \label{eq:s$

 $\label{eq:sigmathbf} SSR = \sum_{i=1}^N \left(F(Y_i - hat Y_i right)^2 \right) Where:$

- \(\mathbf{PC}\) is the principal component.
- $\circ\,$ \(N\) is the number of non-missing observations in the sample data.
- $\,\circ\,$ \(\bar Y\) is the empirical sample average for the dependent variable.
- \circ \(\hat Y_i\) is the regression model estimate value for the i-th observation.
- $\,\circ\,$ \(\mathbf{SST}\) is the total sum of squares for the dependent variable.
- $\circ \ \$ with the total sum of squares for the regression (i.e. ((hat y))) estimate.
- \(\mathbf{SSE}\) is the total sum of error (aka residuals \(\epsilon\)) terms for the regression (i.e. \(\epsilon = y \hat y\)) estimate.
- AND $[\mathbb{SR} = \frac{\mathbb{SR}}{p}] [\mathbb{SR} = \frac{\mathbb{SR}}{p}]$

- $\circ\,$ \(p\) is the number of explanatory (aka predictor) variables in the regression.
- $\,\circ\,$ \(\mathbf{MSR}\) is the mean squares of the regression.
- $\,\circ\,$ \(\mathbf{MSE}\) is the mean squares of the residuals.
- \circ \(\textrm{F-Stat}\) is the test score of the hypothesis.
- o \(\textrm{F-Stat} \sim \mathbf{F}\left(p,N-p-1 \right)\)
- 6. The sample data may include missing values.
- 7. Each column in the input matrix corresponds to a separate variable.
- 8. Each row in the input matrix corresponds to an observation.

- 9. Observations (i.e. row) with missing values in X or Y are removed.
- 10. The number of rows of the response variable (Y) must be equal to the number of rows of the explanatory variables (X).
- 11. The MLR_ANOVA function is available starting with version 1.60 APACHE.

Requirements

References

Hamilton, J .D.; <u>Time Series Analysis</u>, Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; <u>Analysis of Financial Time Series</u> John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]