NDK_MEANTEST

Last Modified on 07/06/2016 12:20 pm CDT

- C/C++
- .Net

intstdcall NDK_MEANTEST(double * X,		
	size_t	Ν,
	double	target,
	double	alpha,
	WORD	method,
	WORD	retType,
	double *	retVal
)	

Calculates the p-value of the statistical test for the population mean.

Returns

status code of the operation

Return values

NDK_SUCCESS Operation successful

NDK_FAILED Operation unsuccessful. See <u>Macros</u> for full list.

Parameters

- [in] **X** is the sample data (a one dimensional array).
- [in] **N** is the number of observations in X.
- [in] target is the assumed mean value. If missing, a default of zero is assumed.
- [in] **alpha** is the statistical significance level. If missing, the default of 5% is assumed.
- [in] **method** is the statistical test to perform (1=parametric).
- [in] **retType** is a switch to select the return output:

	Method	Value	Description
	TEST_PVALUE	1	P-Value
	TEST_SCORE	2	Test statistics (aka score)
	TEST_CRITICALVALUE	E 3	Critical value.
retVal	is the calculated test stati	stics	

[out] retVal is the calculated test statistics.

Remarks

- 1. The sample data may include missing values (NaN).
- 2. The test hypothesis for the population mean: $[H_{o}: mu=mu_o] [H_{1}: muneq mu_o]$ Where:
 - $\circ \ \ (H_{o}\) is the null hypothesis.$
 - $\circ \ \ (H_{1}) \ is the alternate hypothesis.$
 - $\circ\ \\$ with the assumed population mean.

- \(\mu\) is the actual population mean.
- For the case in which the underlying population distribution is normal, the sample mean/average has a Student's t with T-1 degrees of freedom sampling distribution: \[\bar x \sim t_{\nu=T-1} (\mu,\frac{S^2}{T}) \] Where:
 - \(\bar x\) is the sample average.
 - \(\mu\) is the population mean/average.
 - \(S\) is the sample standard deviation. \[S^2 = $\frac{\sum_{i=1}^T (x_i-\frac{x_i}{x_i})^2}{T-1}$

 - $(t_{nu}))$ is the Student's t-Distribution.
 - $\circ~\(\nu\)$ is the degrees of freedom of the Student's t-Distribution.
- 4. The Student's t-Test for the population mean can be used for small and for large data samples.
- 5. This is a two-sides (i.e. two-tails) test, so the computed p-value should be compared with half of the significance level (\(\frac{\alpha}{2}\)).
- 6. The underlying population distribution is assumed normal (Gaussian).

Requirements

Header	SFSDK.H
Library	SFSDK.LIB
DLL	SFSDK.DLL

Examples

int NDK_MEANTEST(double[]	pData,	Namespace: NumXLAPI
UIntPtr	nSize,	Class: SFSDK
double	target,	Scope: Public
double	alpha,	Lifetime: Static
UInt16	argMethod,	
UInt16	retType,	
out double	e retVal	
)		

Calculates the p-value of the statistical test for the population mean.

Returns

Return values

NDK_SUCCESS Operation successful

NDK_FAILED Operation unsuccessful. See <u>Macros</u> for full list.

Parameters

- [in] **pData** is the sample data (a one dimensional array).
- [in] **nSize** is the number of observations in pData.
- [in] **target** is the assumed mean value. If missing, a default of zero is assumed.
- [in] **alpha** is the statistical significance level. If missing, the default of 5% is assumed.
- [in] **argMethod** is the statistical test to perform (1=parametric).
- [in] **retType** is a switch to select the return output:

	Method	Value	Description
	TEST_PVALUE	1	P-Value
	TEST_SCORE	2	Test statistics (aka score)
	TEST_CRITICALVALUE 3		Critical value.
[out]retVal	is the calculated test statistics.		

Remarks

- 1. The sample data may include missing values (NaN).
- 2. The test hypothesis for the population mean: \[H_{o}: \mu=\mu_o\] \[H_{1}: \mu\neq \mu_o\] Where:
 - $\circ \ (H_{o}) is the null hypothesis.$
 - (H_{1}) is the alternate hypothesis.
 - \(\mu_o\) is the assumed population mean.
 - \(\mu\) is the actual population mean.
- For the case in which the underlying population distribution is normal, the sample mean/average has a Student's t with T-1 degrees of freedom sampling distribution: \[\bar x \sim t_{\nu=T-1} (\mu,\frac{S^2}{T}) \] Where:
 - \(\bar x\) is the sample average.
 - \(\mu\) is the population mean/average.
 - \(S\) is the sample standard deviation. \[S^2 = $\frac{i=1}^T(x_i-bar x)^2}{T-1}$
 - $\circ \ (T\)$ is the number of non-missing values in the data sample.
 - $(t_{nu}))$ is the Student's t-Distribution.
 - \(\nu\) is the degrees of freedom of the Student's t-Distribution.
- 4. The Student's t-Test for the population mean can be used for small and for large data samples.
- 5. This is a two-sides (i.e. two-tails) test, so the computed p-value should be compared with half of the significance level (\(\frac{\alpha}{2}\)).
- 6. The underlying population distribution is assumed normal (Gaussian).

Exceptions

Exception Type	Condition
None	N/A

Requirements

Namespace	NumXLAPI
Class	SFSDK
Scope	Public
Lifetime	Static
Package	NumXLAPI.DLL

Examples

References

Hamilton, J .D.; Time Series Analysis, Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]