NDK MAE

Last Modified on 04/14/2016 12:01 pm CDT

- C/C++
- .Net

Calculates the mean absolute error function for the forecast and the eventual outcomes.

Returns

status code of the operation

Return values

```
NDK_SUCCESSOperation successful

NDK_FAILED Operation unsuccessful. See Macros for full list.
```

Parameters

- is the original (eventual outcomes) time series sample data (a one dimensional array).
- $[in] \ \ \, \mathbf{Y} \ \ \,$ is the forecast time series data (a one dimensional array).
- [in] N is the number of observations in X.

[out] retValis the calculated value of this function.

Remarks

- 1. The mean absolute error is a common measure of forecast error in time series analysis.
- 2. The time series is homogeneous or equally spaced.
- 3. The two time series must be identical in size.
- 4. The mean absolute error is given by:

- \(\{x_i\}\) is the actual observations time series.
- \(\{\hat x_i\}\) is the estimated or forecasted time series.
- \(\mathrm{SAE}\) is the sum of the absolute errors (or deviations).
- \(N\) is the number of non-missing data points.

Requirements

Header	SFSDK.H
Library	SFSDK.LIB
DLL	SFSDK.DLL

Examples

```
int NDK_MAE(double[] pData1,
double[] pData2,
UIntPtr nSize,
ref double retVal
)

Namespace: NumXLAPI
Class: SFSDK
Scope: Public
Lifetime: Static
```

Calculates the mean absolute error function for the forecast and the eventual outcomes.

Return Value

a value from NDK RETCODE enumeration for the status of the call.

NDK_SUCCESS operation successful

Error Code

Parameters

[in] **pData1**is the original (eventual outcomes) time series sample data (a one dimensional array).

[in] pData2is the forecast time series data (a one dimensional array).

[in] **nSize** is the number of observations in pData1.

[out] retVal is the calculated value of this function.

Remarks

- 1. The mean absolute error is a common measure of forecast error in time series analysis.
- 2. The time series is homogeneous or equally spaced.
- 3. The two time series must be identical in size.
- 4. The mean absolute error is given by:

- $((x_i))$ is the actual observations time series.
- \(\{\hat x_i\}\) is the estimated or forecasted time series.

- \(\mathrm{SAE}\) is the sum of the absolute errors (or deviations).
- \(N\) is the number of non-missing data points.

Exceptions

Exception Type	Condition
None	N/A

Requirements

Namespace	NumXLAPI
Class	SFSDK
Scope	Public
Lifetime	Static
Package	NumXLAPI.DLL

Examples

References

Hull, John C.; Options, Futures and Other Derivatives Financial Times/ Prentice Hall (2011), ISBN 978-0132777421

See Also

[template("related")]