NDK_LESMTH

Last Modified on 07/07/2016 11:34 am CDT

- C/C++
- .Net

```
int __stdcall NDK_LESMTH(double * pData,
size_t nSize,
BOOL bAscending,
double * alpha,
int xlHorizon,
BOOL bOptimize,
double * retVal
)
```

Returns the (Brown's) linear exponential smoothing estimate of the value of X at time T+m (based on the raw data up to time t).

Returns

status code of the operation

Return values

NDK_SUCCESS Operation successful

NDK_FAILED Operation unsuccessful. See <u>Macros</u> for full list.

Parameters

[in]	pData	is the univariate time series data (a one dimensional array).
[in]	nSize	is the number of elements in pData.
[in]	bAscending	is the time order in the data series (i.e. the first data point's corresponding
		date (earliest date=1 (default), latest date=0)).
[in]	alpha	is the smoothing factor (alpha should be between zero and one (exclusive)). If
		missing or omitted, a value of 0.333 is used.
[in]	xlHorizon	is the forecast time horizon beyond the end of pData. If missing, a default
		value of 0 (latest or end of X) is assumed.
[in]	bOptimize	is a flag (True/False) for searching and using the optimal value of the
		smoothing factor. If missing or omitted, optimize is assumed false.
[out]	retVal	is the calculated value of this function.

Remarks

- 1. The Brown's Linear exponential smoothing function (F_{T+m}) is defined as: $[S'_1 = X_1]$ [S''_1 = X_1 \] $[S'_{t>1} = \A B A X_{t} + (1-\A B A)S'_{t-1}] [S''_{t>1} = \A B A S'_{t} + (1-\A B A)S''_{t-1}] [a_t = 2S'_t - S''_t] [b_t = \frac{1}{a} (A B A) (S''_t - S''_t)] [F_{T+m} = a_T + m times b_T] Where:$
 - $\circ \ \ (X_t)$ is the value of the time series at time t.

- $\circ \ \ (T\)$ is the time of the latest observation in the sample data.
- \(\alpha\) is the smoothing factor.
- 2. \(m\) is the estimate time/horizon (past the end of raw data).
- 3. To search for the optimal value of the smoothing factor (alpha), the time series must have two(2) or more non-missing observations.
- 4. The time series is homogeneous or equally spaced.
- 5. The time series may include missing values (e.g. NaN) at either end.

Requirements

Header	SFSDK.H			
Library	SFSDK.LIB			
DLL	SFSDK.DLL			

Examples

int NDK_LESMTH	l(double[]	pData,
	int	nSize,
	BOOL	bAscending,
	double *	alpha,
	int	xlHorizon,
	BOOL	bOptimize,
	ref double	e retVal
)	

Namespace: NumXLAPI Class: SFSDK Scope: Public Lifetime: Static

Returns the (Brown's) linear exponential smoothing estimate of the value of pData at time T+m (based on the raw data up to time t).

Returns

status code of the operation

Return values

NDK_SUCCESSOperation successfulNDK_FAILEDOperation unsuccessful. See Macros for full list.

Parameters

[in]	pData	is the univariate time series data (a one dimensional array).
[in]	nSize	is the number of elements in pData.
[in]	bAscending	gis the time order in the data series (i.e. the first data point's corresponding
		date (earliest date=1 (default), latest date=0)).
[in]	alpha	is the smoothing factor (alpha should be between zero and one (exclusive)). If
		missing or omitted, a value of 0.333 is used.
[in]	xlHorizon	is the forecast time horizon beyond the end of X. If missing, a default value
		of 0 (latest or end of X) is assumed.
[in]	bOptimize	is a flag (True/False) for searching and using the optimal value of the
		smoothing factor. If missing or omitted, optimize is assumed false.
[out]	retVal	is the calculated value of this function.

Remarks

- 1. The Brown's Linear exponential smoothing function (F_{T+m}) is defined as: $[S'_1 = X_1] \\ [S''_1 = X_1] \\[S''_{t>1} = \\alpha X_{t} + (1-\\alpha)S'_{t-1}] \\[S''_{t>1} = \\alpha S'_{t} + (1-\\\\alpha)S''_{t-1}] \\[a_t = 2S'_t S''_t] \\[b_t = \\frac_{alpha}{1-\\alpha}\\times (S'_t S''_t)] \\[F_{T+m} = a_T + m\\times b_T] Where:$
 - $\circ \ (X_t)$ is the value of the time series at time t.
 - $\circ\ \ (T\)$ is the time of the latest observation in the sample data.
 - \(\alpha\) is the smoothing factor.
- 2. \(m\) is the estimate time/horizon (past the end of raw data).
- 3. To search for the optimal value of the smoothing factor (alpha), the time series must have two(2) or more non-missing observations.
- 4. The time series is homogeneous or equally spaced.
- 5. The time series may include missing values (e.g. NaN) at either end.

Exceptions

Exception Type	Condition
None	N/A

Requirements

Namespace	NumXLAPI			
Class	SFSDK			
Scope	Public			
Lifetime	Static			

	Package	NumXLAPI.DLL				
Examples						
References						

References

Hamilton, J .D.; Time Series Analysis, Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]