NDK_IQR

Last Modified on 04/15/2016 11:12 am CDT

- C/C++
- .Net

Returns the inter quartile range (IQR), also called the mid-spread or middle fifty.

Returns

status code of the operation

Return values

NDK_SUCCESSOperation successful NDK_FAILED Operation unsuccessful. See <u>Macros</u> for full list.

Parameters

- [in] **X** is the input data sample (a one dimensional array).
- [in] N is the number of observations in X.
- [out] retValis the calculated IQR value.

Note

1. The input time series data may include missing values (NaN), but they will not be included in the calculations.

2. The interquartile range is defined as follows:

 $[\operatorname{IQR}=Q_3-Q_1]$

where

- \(Q_3\) is the third quartile.
- \(Q_1\) is the first quartile.

3. Interquartile range (IQR) is a robust statistic because it has a break down point of 25%. It is often preferred to the total range.

Requirements

Header	SFSDK.H
Library	SFSDK.LIB

DLL SFSDK.DLL				
Examples				
int NDK_IQR(double[] pData,	Namespace: NumXLAPI			
UINTPT INSIZE,	Scope: Public			
	Lifetime: Static			
,				
Returns the inter quartile range (IQR), also called the mid-spread or middle fift	ty.			
Return Value				
a value from NDK PETCODE enumeration for the status of the call				
NDK_SUCCESS operation successful				
Error Error Code				
Parameters				
[in] pData is the input data sample (a one dimensional array).				
[in] nSize is the number of observations in pData.				
[out] retValis the calculated IQR value.				
Remarks				
calculations.				
2. The interquartile range is defined as follows:				
\[\mathrm{IQR}=Q_3-Q_1\]				
where				
 \(Q_3\) is the third quartile. 				
 \(Q_1\) is the first quartile. 				
3. Interquartile range (IQR) is a robust statistic because it has a break down point of 25%. It is				
often preferred to the total range.				
Exceptions				

Exception Type Condition

	None	N/A	
Requ	irements		
	Namespace	NumXLAPI	
	Class	SFSDK	
	Scope	Public	
	Lifetime	Static	
	Package	NumXLAPI.DLL	
Examples			

References

Hamilton, J .D.; Time Series Analysis, Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]