NDK_IDFT

Last Modified on 04/25/2016 1:43 pm CDT

- C/C++
- .Net

```
int __stdcall NDK_IDFT(double * amp,
double * phase,
size_t nSize,
double * X,
size_t N
)
```

Calculates the inverse discrete fast Fourier transformation, recovering the time series.

Returns

status code of the operation

Return values

NDK_SUCCESSOperation successfulNDK_FAILEDOperation unsuccessful. See Macros for full list.

Parameters

- [in] **amp** is an array of the amplitudes of the fourier transformation components.
- [in] phase is an array of the phase angle (radian) of the Fourier transformation components .
- [in] **nSize** is the number of spectrum components (i.e. size of amp and phase).
- [out] X is the filtered (recovered) time series output
- [in] N is the original number of observations used to calculate the fourier transform.

Remarks

- 1. The input time series may include missing values (NaN) at either end, but they will not be included in the calculations.
- 2. The input time series must be homogeneous or equally spaced.
- 3. The first value in the input time series must correspond to the earliest observation.
- The frequency component order, \(k\), must be a positive number less than \(N\), or an error (#VALUE!) is returned.
- 5. The DFT returns the phase angle in radians; i.e. \(0 \lt \phi \lt 2 \times \pi\).
- 6. The discrete Fourier transformation (DFT) is defined as follows: \[X_k = \sum_{j=0}^{N-1} x_j e^{-\frac{1}{nc}2 i} N j k}] Where:
 - \(k\) is the frequency component
 - $\circ \ (x_0,...,x_{N-1}))$ are the values of the input time series
- 7. The Cooley-Tukey radix-2 decimation-in-time fast Fourier transformation (FFT) algorithm divides

a DFT of size N into two overlapping DFTs of size $\frac{N}{2}$ at each of its stages using the following formula: $[X_{k} = \frac{E_k + \alpha O_k & \det O_k & \det N_{2} \\ E_{\left(k-\frac{N}{2} \right)} - \frac{A}{2} \\ H_{cases} = \frac{1}{2} \\ H_{cases} =$

- \(E_k\) is the DFT of the even-indicied values of the input time series, \(x_{2m} \left(x_0, x_2, \ldots, x_{N-2}\right)\)
- (O_k) is the DFT of the odd-indicied values of the input time series, $(x_{2m+1} + 1) + x_3$, x_3 , $(x_{2m+1}) + (x_1, x_3, 1)$
- o \(\alpha = e^{ \left (-2 \pi i k /N \right)}\)
- 8. The unit frequency of the DFT is \(\frac{2\pi}{N}\), where \(N\) is the number of non-missing observations.

Requirements

Header	SFSDK.H	
Library	SFSDK.LIB	
DLL	SFSDK.DLL	

Examples

int	NDK_IDFT(double[]	amp,
	double[]	phase,
	UIntPtr	nSize,
	double[]	data,
	UIntPtr	nWindowSize

)

Namespace: NumXLAPI Class: SFSDK Scope: Public Lifetime: Static

Calculates the inverse discrete fast Fourier transformation, recovering the time series.

Return Value

a value from NDK_RETCODE enumeration for the status of the call.

NDK_SUCCESS operation successful

Error Error Code

Parameters

- [in] **amp** is an array of the amplitudes of the fourier transformation components.
- $[\verb"in"]$ <code>phase</code> is an array of the phase angle (radian) of the Fourier transformation components .
- [in] **nSize** is the number of spectrum components (i.e. size of amp and phase).
- [out] data is the filtered (recovered) time series output
- [in] **nSize** is the original number of observations used to calculate the fourier transform.

Remarks

- 1. The input time series may include missing values (NaN) at either end, but they will not be included in the calculations.
- 2. The input time series must be homogeneous or equally spaced.
- 3. The first value in the input time series must correspond to the earliest observation.
- The frequency component order, \(k\), must be a positive number less than \(N\), or an error (#VALUE!) is returned.
- 5. The DFT returns the phase angle in radians; i.e. \(0 \lt \phi \lt 2 \times \pi\).
- 6. The discrete Fourier transformation (DFT) is defined as follows: \[X_k = \sum_{j=0}^{N-1} x_j e^{-\frac{1}{n}} i_{N} j k} \] Where:
 - $\circ\ \\$ (k\) is the frequency component
 - $\circ \ (x_0,...,x_{N-1}))$ are the values of the input time series
- 7. The Cooley-Tukey radix-2 decimation-in-time fast Fourier transformation (FFT) algorithm divides a DFT of size N into two overlapping DFTs of size \$\frac{N}{2}\$ at each of its stages using the following formula: \[X_{k} = \begin{cases} E_k + \alpha \cdot O_k & \text{ if } k \lt \dfrac{N}{2} \\ E_{\left (k-\frac{N}{2} \right)} - \ \alpha \cdot O_{\left (k-\frac{N}{2} \right)} & \text{ if } k \geq \dfrac{N}{2} \end{cases} \] Where:
 - \(E_k\) is the DFT of the even-indicied values of the input time series, \(x_{2m} \left(x_0, x_2, \ldots, x_{N-2}\right)\)
 - \(O_k\) is the DFT of the odd-indicied values of the input time series, \(x_{2m+1} \left(x_1, x_3, \ldots, x_{N-2}\right)\)
 - o \(\alpha = e^{ \left (-2 \pi i k /N \right)}\)
 - $\circ\ \(N\)$ is the number of non-missing values in the time series data
- The unit frequency of the DFT is \(\frac{2\pi}{N}\), where \(N\) is the number of non-missing observations.

Exceptions

Exception Type	Condition
None	N/A

Requirements

Namespace	NumXLAPI
Class	SFSDK
Scope	Public
Lifetime	Static
Package	NumXLAPI.DLL

Examples

References

Hamilton, J .D.; Time Series Analysis, Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]