NDK_GLM_FORE

Last Modified on 03/14/2016 11:20 am CDT

- <u>C/C++</u>
- <u>.Net</u>

intstdcall NDK_GLM_FORE (double *	Х,
size_t	nVars,
double *	betas,
size_t	nBetas,
double	phi,
WORD	Lvk,
WORD	retType,
double	alpha,
double *	retval
)	

calculates the expected response (i.e. mean) value; given the GLM model and the values of the explanatory variables.

Returns

status code of the operation

Return values

NDK_SUCCESS	Operation successful
NDK_FAILED	Operation unsuccessful. See <u>Macros</u> for full list.

Parameters

[in]	X	is the independent variables data matrix, such that each column represents one variable
[in]	nVars	is the number of independent variables (or columns in X)
[in,out]	betas	are the coefficients of the GLM model (a one dimensional array)
[in]	nBetas	is the number of the coefficients in betas. Note that nBetas must be equal
		to nVars+1
[in,out]	phi	is the GLM dispersion parameter. Phi is only meaningful for Binomial
		(1/Datch of that size) and for Gaussian (Variance).

	Lvk	- Binomial : phi = Reciprocal of the batch/trial size.
		• Gaussian : phi = variance.
		• Poisson : $phi = 1.0$ [in] is the link function that describes how the mean
		depends on the linear predictor (see GLM_LINK_FUNC).
		1. Identity (default)
		2. Log
		3. Logit
		4. Probit
		5. Complementary log-log
[in]	retType	e is a switch to select the type of value returned: 1= Quick Guess,
		2=Calibrated, 3= Std. Errors (see # FORECAST_RETVAL_FUNC)
[in]	alpha	is the statistical significance level. If missing, a default of 5% is assumed.
[out]	retval	is the calculated forecast value
	<pre>[in] [in] [out]</pre>	[in] retType [in] alpha [out] retval

Remarks

- 1. The underlying model is described **here**.
- 2. GLM_FORE returns an array of size equal to number of rows in the input response (Y) or explanatory variables (X).
- 3. The number of rows in response variable (Y) must be equal to number of rows of the explanatory variables (X).
- 4. The betas input is optional, but if the user provide one, the number of betas must equal to the number of explanatory variables (i.e. X) plus one (intercept).
- 5. For GLM with Poisson distribution,
 - The values of response variable must be non-negative integers.
 - $\circ\,$ The value of the dispersion factor (Phi) must be either missing or equal to one.
- 6. For GLM with Binomial distribution,
 - The values of the response variable must be non-negative fraction between zero and one, inclusive.
 - The value of the dispersion factor (Phi) must be a positive fraction (greater than zero, and less than one).
- 7. For GLM with Gaussian distribution, the dispersion factor (Phi) value must be positive.

Requirements

	S
L	F
i	S
b	D
r	Κ
a	
r	L
y	Ι
	В
	S
	F
	S
Þ	D
l.	Κ
l.	
	D
	L
	L

References

Hamilton, J .D.; <u>Time Series Analysis</u>, Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; <u>Analysis of Financial Time Series</u> John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]