NDK GARCHM SIM

Last Modified on 07/15/2016 9:59 am CDT

- C/C++
- .Net

```
int stdcall NDK GARCHM SIM(double
                                  mu,
                    double
                                  flambda,
                    const double * Alphas,
                    size t
                                  p,
                    const double * Betas,
                   size t
                                  q,
                   WORD
                                  nInnovationType,
                    double
                                  nu,
                   double *
                                  pData,
                   size_t
                                  nSize,
                   double *
                                  sigmas,
                   size_t
                                  nSigmaSize,
                    UINT
                                  nSeed,
                    double *
                                  retArray.
                   size_t
                                  nSteps
```

Returns a simulated data series the underlying GARCH process.

Returns

status code of the operation

Return values

NDK_SUCCESS Operation successful

NDK_FAILED Operation unsuccessful. See <u>Macros</u> for full list.

Parameters

[ln]	mu	is the	GARCH	model	conditional	mean	(i.e. mu).	
------	----	--------	-------	-------	-------------	------	------------	--

[in] **flambda** is the volatility coefficient for the mean. In finance, lambda is referenced

as the risk premium.

[in] Alphas are the parameters of the ARCH(p) component model (starting with the

lowest lag).

[in] **p** is the number of elements in Alphas array

[in] **Betas** are the parameters of the GARCH(q) component model (starting with

the lowest lag).

[in] **q** is the number of elements in Betas array

[in] **nInnovationType** is the probability distribution function of the innovations/residuals

(see INNOVATION_TYPE)

is the shape factor (or degrees of freedom) of the

innovations/residuals probability distribution function.

[in] pData is the univariate time series data (a one dimensional array).

[in] nSize is the number of observations in pData.

is the univariate time series data (a one dimensional array of cells (e.g. [in] sigmas

rows or columns)) of the last q realized volatilities.

[in] nSigmaSize is the number of elements in sigmas. Only the latest q observations are

used.

[in] nSeed is an unsigned integer for setting up the random number generators

is the calculated simulation value [out] retArray

[in] nSteps is the number of future steps to simulate for.

Remarks

1. The underlying model is described here.

2. The time series is homogeneous or equally spaced.

3. The time series may include missing values (e.g. #N/A) at either end.

4. The number of parameters in the input argument - alpha - determines the order of the ARCH component model.

5. The number of parameters in the input argument - beta - determines the order of the GARCH component model.

6. The function GARCHM SIM was added in version 1.63 SHAMROCK.

Requirements

Header	SFSDK.H
Library	SFSDK.LIB
DLL	SFSDK.DLL

int NDK_GARCHM_SIM(double mu,

> double flambda,

double[] Alphas,

UIntPtr p,

double[] Betas,

UIntPtr q,

short nInnovationType,

double nu,

double[] pData,

UIntPtr nSize,

UIntPtr nSeed,

ref double retVal,

UIntPtr nSteps Scope: Public

Namespace: NumXLAPI Class: SFSDK

Lifetime: Static

Returns a simulated data series the underlying GARCH process.

Return Value

a value from NDK_RETCODE enumeration for the status of the call.

NDK SUCCESS operation successful

)

Error Code

Parameters

io tho of a torrino dori domaition di modif (no. ma).	[in] mu	is the GARCH model	conditional mean	(i.e. mu).
---	----------------	--------------------	------------------	------------

[in] **flambda** is the volatility coefficient for the mean. In finance, lambda is referenced

as the risk premium.

[in] **Alphas** are the parameters of the ARCH(p) component model (starting with the

lowest lag).

[in] **p** is the number of elements in Alphas array

[in] **Betas** are the parameters of the GARCH(q) component model (starting with

the lowest lag).

[in] **q** is the number of elements in Betas array

[in] **nInnovationType** is the probability distribution function of the innovations/residuals

(see INNOVATION_TYPE)

[in] **nu** is the shape factor (or degrees of freedom) of the

innovations/residuals probability distribution function.

[in] **pData** is the univariate time series data (a one dimensional array).

[in] **nSize** is the number of observations in X.

[in] **sigmas** is the univariate time series data (a one dimensional array of cells (e.g.

rows or columns)) of the last q realized volatilities.

[in] **nSigmaSize** is the number of elements in sigmas. Only the latest q observations are

used.

[in] **nSeed** is an unsigned integer for setting up the random number generators

[out] retArray is the calculated simulation value

is the number of future steps to simulate for.

Remarks

- 1. The underlying model is described here.
- 2. The time series is homogeneous or equally spaced.
- 3. The time series may include missing values (e.g. #N/A) at either end.
- 4. The number of parameters in the input argument alpha determines the order of the ARCH component model.
- 5. The number of parameters in the input argument beta determines the order of the GARCH component model.
- 6. The function GARCHM_SIM was added in version 1.63 SHAMROCK.

Exceptions

Exception Type	Condition
None	N/A

Requirements

Namespace	NumXLAPI
Class	SFSDK
Scope	Public
Lifetime	Static
Package	NumXLAPI.DLL

Exampl	es
--------	----

References

Hamilton, J.D.; Time Series Analysis, Princeton University Press (1994), ISBN 0-691-04289-6

Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]