NDK GARCHM_PARAM

Last Modified on 07/15/2016 9:55 am CDT

- C/C++
- .Net

```
int __stdcall NDK_GARCHM_PARAM(double * pData,
                     size_t nSize,
                     double * mu,
                     double * flambda,
                     double * Alphas,
                     size_t
                             p,
                     double * Betas,
                     size_t
                             q,
                     WORD nInnovationType,
                     double * nu,
                     WORD retType,
                     size_t maxIter
                    )
```

Returns an array of cells for the initial (non-optimal), optimal or standard errors of the model's parameters.

Returns

status code of the operation

Return values

NDK_SUCCESS Operation successful

NDK_FAILED Operation unsuccessful. See <u>Macros</u> for full list.

Parameters

[in]	pData	is the univariate time series data (a one dimensional array).
[in]	nSize	is the number of observations in pData.
[in,out] mu	is the GARCH model conditional mean (i.e. mu).
[in,out	flambda	is the volatility coefficient for the mean. In finance, lambda is
		referenced as the risk premium.
[in,out	Alphas	are the parameters of the ARCH(p) component model (starting with
		the lowest lag).
[in]	р	is the number of elements in Alphas array
[in,out	Betas	are the parameters of the GARCH(q) component model (starting with

[in] is the number of elements in Betas array

the lowest lag).

[in] nInnovationType is the probability distribution function of the innovations/residuals

(see INNOVATION_TYPE)

• INNOVATION GAUSSIAN Gaussian Distribution (default)

• INNOVATION TDIST Student's T-Distribution,

• INNOVATION GED Generalized Error Distribution (GED)

[in,out] nu

is the shape factor (or degrees of freedom) of the innovations/residuals probability distribution function.

[in] retType

maxIter

is a switch to select the type of value returned: 1= Quick Guess,

2=Calibrated, 3= Std. Errors (see MODEL_RETVAL_FUNC) [in]

is the maximum number of iterations used to calibrate the model. If

missing or less than 100, the default maximum of 100 is assumed.

Remarks

1. The underlying model is described here.

2. The time series is homogeneous or equally spaced.

3. The time series may include missing values (e.g. #N/A) at either end.

Requirements

Header	SFSDK.H				
Library	SFSDK.LIB				
DLL	SFSDK.DLL				

```
int NDK_GARCHM_PARAM(double[]
                        pData,
             UIntPtr
                        nSize,
             double[]
                        mu.
             ref double flambda,
             double[]
                      Alphas,
             UIntPtr
                        p,
             double[]
                        Betas,
             UIntPtr
                        q,
             short
                        nInnovationType,
             ref double nu.
             short
                        retType,
             UIntPtr
                        maxIter
            )
```

Namespace: NumXLAPI

Class: SFSDK Scope: Public Lifetime: Static

Returns an array of cells for the initial (non-optimal), optimal or standard errors of the model's parameters.

Return Value

a value from NDK_RETCODE enumeration for the status of the call.

NDK SUCCESS operation successful

Error Code

Parameters

F 2 12 T	D (4.1		4.5		1 (/	10 1 1 A	
[in]	pData	IS	the	univariate	time	series	data	(a	one dimensional array)	
	prata	.0	CITO	armvariaco		001100	aata	10	ono annonomana amay,	

[in] **nSize** is the number of observations in pData.

[in, out] mu is the GARCH model conditional mean (i.e. mu).

[in, out] flambda is the volatility coefficient for the mean. In finance, lambda is

referenced as the risk premium.

[in, out] Alphas are the parameters of the ARCH(p) component model (starting with

the lowest lag).

[in] **p** is the number of elements in Alphas array

[in, out] Betas are the parameters of the GARCH(q) component model (starting with

the lowest lag).

[in] **q** is the number of elements in Betas array

nInnovationType is the probability distribution function of the innovations/residuals

(see INNOVATION_TYPE)

• INNOVATION_GAUSSIAN Gaussian Distribution (default)

• INNOVATION_TDIST Student's T-Distribution,

• INNOVATION GED Generalized Error Distribution (GED)

[in, out] **nu** is the shape factor (or degrees of freedom) of the

innovations/residuals probability distribution function.

retType is a switch to select the type of value returned: 1= Quick Guess,

2=Calibrated, 3= Std. Errors (see MODEL_RETVAL_FUNC)

[in] maxIter is the maximum number of iterations used to calibrate the model. If

missing or less than 100, the default maximum of 100 is assumed.

Remarks

- 1. The underlying model is described here.
- 2. The time series is homogeneous or equally spaced.
- 3. The time series may include missing values (e.g. #N/A) at either end.

Exceptions

Exception Type	Condition
None	N/A

Requirements

Namespace	NumXLAPI				
Class	SFSDK				

Scope	Public			
Lifetime	Static			
Package	NumXLAPI.DLL			

Exam	pl	le	S
------	----	----	---

Hamilton, J.D.; Time Series Analysis, Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]