NDK_GARCHM_LRVAR

Last Modified on 01/11/2017 8:11 pm CST

- C/C++
- .Net

double flambda, const double * Alphas, size_t p,	
const double * <mark>Alphas,</mark> size_t p,	
size_t p,	
const double * Betas,	
size_t q,	
WORD nInnovationType,	
double nu,	
double * retVal	
)	

Calculates the long-run average volatility for the given GARCH-M model.

Returns

status code of the operation

Return values

NDK_SUCCESSOperation successfulNDK_FAILEDOperation unsuccessful. See Macros for full list.

Parameters

[in]	mu	is the GARCH model conditional mean (i.e. mu).
[in]	flambda	is the volatility coefficient for the mean. In finance, lambda is referenced
		as the risk premium.
[in]	Alphas	are the parameters of the ARCH(p) component model (starting with the
		lowest lag).
[in]	р	is the number of elements in Alphas array
[in]	Betas	are the parameters of the GARCH(q) component model (starting with
		the lowest lag).
[in]	q	is the number of elements in Betas array
[in]	nInnovationType	is the probability distribution function of the innovations/residuals
		(see INNOVATION_TYPE)
		 INNOVATION_GAUSSIAN Gaussian Distribution (default)
		 INNOVATION_TDIST Student's T-Distribution,
		 INNOVATION_GED Generalized Error Distribution (GED)
[in]	nu	is the shape factor (or degrees of freedom) of the
		innovations/residuals probability distribution function.
[out]	retVal	is the calculated long run value

Remarks

- 1. The underlying model is described here.
- The GARCH-M long-run average variance is defined as: \(V_L=\frac{\alpha_o}{1-\sum_{i=1}^p\alpha_i-\sum_{j=1}^q\beta_j}\)
- 3. The time series is homogeneous or equally spaced.
- 4. GARCHM_CHECK examines the model's coefficients for:
 - Coefficients are all positive
- 5. The number of parameters in the input argument alpha determines the order of the ARCH component model.
- 6. The number of parameters in the input argument beta determines the order of the GARCH component model.

Requirements

Header	SFSDK.H
Library	SFSDK.LIB
DLL	SFSDK.DLL

int NDK_GARCHM_LRVAR(double	mu,	Namespace: NumXLAPI
double	lambda,	Class: SFSDK
double[]	Alphas,	Scope: Public
UIntPtr	p,	Lifetime: Static
double[]	Betas,	
UIntPtr	q,	
short	nInnovationType,	
double	nu,	
ref double	e retVal	
)		

Calculates the long-run average volatility for the given GARCH-M model.

Return Value

a value from NDK_RETCODE enumeration for the status of the call.

NDK_SUCCESSoperation successfulErrorError Code

Parameters

[in] **mu**

is the GARCH model conditional mean (i.e. mu).

[in] lambda	is the volatility coefficient for the mean. In finance, lambda is referenced
	as the risk premium.
[in] Alphas	are the parameters of the ARCH(p) component model (starting with the
	lowest lag).
[in] p	is the number of elements in Alphas array
[in] Betas	are the parameters of the GARCH(q) component model (starting with
	the lowest lag).
[in] q	is the number of elements in Betas array
[in] nlnnovationTyp	e is the probability distribution function of the innovations/residuals
	(see INNOVATION_TYPE)
	 INNOVATION_GAUSSIAN Gaussian Distribution (default)
	 INNOVATION_TDIST Student's T-Distribution,
	 INNOVATION_GED Generalized Error Distribution (GED)
[in] nu	is the shape factor (or degrees of freedom) of the
	innovations/residuals probability distribution function.
[out]retVal	is the calculated long run value

Remarks

- 1. The underlying model is described here.
- The GARCH-M long-run average variance is defined as: \(V_L=\frac{\alpha_o}{1-\sum_{i=1}^p\alpha_i-\sum_{j=1}^q\beta_j}\)
- 3. The time series is homogeneous or equally spaced.
- 4. GARCHM_CHECK examines the model's coefficients for:
 - Coefficients are all positive
- 5. The number of parameters in the input argument alpha determines the order of the ARCH component model.
- 6. The number of parameters in the input argument beta determines the order of the GARCH component model.

Exceptions

Exception Type	Condition
None	N/A

Requirements

Namespace	NumXLAPI
Class	SFSDK
Scope	Public

Lifetime	Static
Package	NumXLAPI.DLL

Examples

References

* Hamilton, J.D.; Time Series Analysis, Princeton University Press (1994), ISBN 0-691-04289-6

* Tsay, Ruey S.; <u>Analysis of Financial Time Series</u> John Wiley & SONS. (2005), ISBN 0-471-690740

* D. S.G. Pollock; <u>Handbook of Time Series Analysis</u>, <u>Signal Processing</u>, and <u>Dynamics</u>; Academic

Press; Har/Cdr edition(Nov 17, 1999), ISBN: 125609906

* Box, Jenkins and Reisel; <u>Time Series Analysis: Forecasting and Control</u>; John Wiley & SONS.; 4th edition(Jun 30, 2008), ISBN: 470272848

See Also

[template("related")]