NDK_GARCHM_GOF

Last Modified on 11/19/2019 9:21 am CST

- C/C++
- .Net

```
int __stdcall NDK_GARCHM_GOF(double *
                                               pData,
                                 size_t
                                               nSize,
                                 double
                                               mu,
                                 double
                                               flambda,
                                 const double * Alphas,
                                 size_t
                                               p,
                                 const double * Betas,
                                 size_t
                                               q,
                                 WORD
                                               nInnovationType,
                                 double
                                               nu,
                                 WORD
                                               retType,
                                 double *
                                               retVal
                                )
```

Computes the log-likelihood ((LLF), Akaike Information Criterion (AIC) or other goodness of fit function of the GARCH model.

Returns

status code of the operation

Return values

NDK_SUCCESS Operation successful

NDK_FAILED Operation unsuccessful. See Macros < /u> for full list.

Parameters

ai aiiietei S		
[in]	pData	is the univariate time series data (a one dimensional array).
[in]	nSize	is the number of observations in pData.
[in]	mu	is the GARCH model conditional mean (i.e. mu).
[in]	flambda	is the volatility coefficient for the mean. In finance, lambda is referenced as
		the risk premium.
[in]	Alphas	are the parameters of the ARCH(p) component model (starting with the
		lowest lag).
[in]	р	is the number of elements in Alphas array
[in]	Betas	are the parameters of the GARCH(q) component model (starting with the
		lowest lag).
[in]	q	is the number of elements in Betas array

[in] **nInnovationType**is the probability distribution function of the innovations/residuals

(see INNOVATION TYPE)

- INNOVATION_GAUSSIAN Gaussian Distribution (default)
- INNOVATION_TDIST Student's T-Distribution,
- INNOVATION GED Generalized Error Distribution (GED)

[in] **nu**

is the shape factor (or degrees of freedom) of the innovations/residuals probability distribution function.

[in] retType
[out] retVal

is a switch to select a fitness measure (see **GOODNESS_OF_FIT_FUNC**) is the calculated goodness of fit value.

Remarks

- 1. The underlying model is described here.
- 2. The Log-Likelihood Function (LLF) is described here.
- 3. The time series is homogeneous or equally spaced.
- 4. The time series may include missing values (e.g. #N/A) at either end.
- 5. The maximum likelihood estimation (MLE) is a statistical method for fitting a model to the data and provides estimates for the model's parameters.
- 6. The number of parameters in the input argument alpha determines the order of the ARCH component model.
- 7. The number of parameters in the input argument beta determines the order of the GARCH component model.

Requirements

Header	SFSDK.H
Library	SFSDK.LIB
DLL	SFSDK.DLL

```
int NDK_GARCHM_GOF(double[] pData,
```

size_t nSize,

double mu,

double flambda,

double[] Alphas,

UIntPtr p,

double[] Betas,

UIntPtr q,

short nlnnovationType,

double nu,

short retType,

Namespace: NumXLAPI

Class: SFSDK Scope: Public

Lifetime: Static

double[] retVal

)

Computes the log-likelihood ((LLF), Akaike Information Criterion (AIC) or other goodness of fit function of the GARCH model.

Return Value

a value from **NDK_RETCODE** • enumeration for the status of the call.

NDK SUCCESS operation successful

Error Code

Parameters

[in]	Data	is	the	univariate	e time	series	data	(a	one	dime	nsional	array)).
------	------	----	-----	------------	--------	--------	------	----	-----	------	---------	--------	----

[in] **nSize** is the number of observations in pData.

[in] **mu** is the GARCH model conditional mean (i.e. mu).

[in] **flambda** is the volatility coefficient for the mean. In finance, lambda is referenced as

the risk premium.

[in] Alphas are the parameters of the ARCH(p) component model (starting with the

lowest lag).

[in] **p** is the number of elements in Alphas array

[in] **Betas** are the parameters of the GARCH(q) component model (starting with the

lowest lag).

[in] **q** is the number of elements in Betas array

[in] **nInnovationType**is the probability distribution function of the innovations/residuals

(see INNOVATION_TYPE)

INNOVATION_GAUSSIAN Gaussian Distribution (default)

INNOVATION_TDIST Student's T-Distribution,

• INNOVATION_GED Generalized Error Distribution (GED)

is the shape factor (or degrees of freedom) of the innovations/residuals

probability distribution function.

[in] retType is a switch to select a fitness measure (see GOODNESS_OF_FIT_FUNC)

[out] retVal is the calculated goodness of fit value.

Remarks

- 1. The underlying model is described here.
- 2. The Log-Likelihood Function (LLF) is described here.
- 3. The time series is homogeneous or equally spaced.
- 4. The time series may include missing values (e.g. #N/A) at either end.
- 5. The maximum likelihood estimation (MLE) is a statistical method for fitting a model to the data and provides estimates for the model's parameters.
- 6. The number of parameters in the input argument alpha determines the order of the ARCH

- component model.
- 7. The number of parameters in the input argument beta determines the order of the GARCH component model.

Exceptions

Exception Type	Condition
None	N/A

Requirements

Namespace	NumXLAPI				
Class	SFSDK				
Scope	Public				
Lifetime	Static				
Package	NumXLAPI.DLL				

Examples

References

- * Hamilton, J.D.; Time Series Analysis, Princeton University Press (1994), ISBN 0-691-04289-6
- * Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740
- * D. S.G. Pollock; <u>Handbook of Time Series Analysis</u>, <u>Signal Processing</u>, <u>and Dynamics</u>; Academic Press; Har/Cdr edition(Nov 17, 1999), ISBN: 125609906
- * Box, Jenkins and Reisel; <u>Time Series Analysis: Forecasting and Control</u>; John Wiley & SONS.; 4th edition(Jun 30, 2008), ISBN: 470272848

See Also