NDK GARCH FORE

Last Modified on 01/11/2017 8:42 pm CST

- C/C++
- .Net

```
int stdcall NDK GARCH FORE(double *
                                  pData,
                    size t
                                  nSize,
                    double *
                                  sigmas,
                    size t
                                  nSigmaSize,
                    double
                                  mu,
                    const double * Alphas,
                    size t
                                  p,
                    const double * Betas,
                    size t
                    WORD
                                  nInnovationType,
                    double
                                  nu,
                    size_t
                                  nStep,
                    WORD
                                  retType,
                    double
                                  alpha,
                    double *
                                  retVal
```

Calculates the out-of-sample forecast statistics.

Returns

status code of the operation

Return values

NDK_SUCCESS Operation successful

NDK_FAILED Operation unsuccessful. See <u>Macros</u> for full list.

Parameters

[ln]	pData	İS	the	univariate	time	series	data	(a	one	dimensional	l array)	
------	-------	----	-----	------------	------	--------	------	----	-----	-------------	----------	--

[in] **nSize** is the number of observations in pData.

[in] **sigmas** is the univariate time series data (a one dimensional array of cells (e.g.

rows or columns)) of the last q realized volatilities.

is the number of elements in sigmas. Only the latest q observations are

used.

[in] **mu** is the GARCH model conditional mean (i.e. mu).

[in] **Alphas** are the parameters of the ARCH(p) component model (starting with the

lowest lag).

[in] **p** is the number of elements in Alphas array

[in] Betas are the parameters of the GARCH(q) component model (starting with

the lowest lag).

[in] **q** is the number of elements in Betas array

[in] **nInnovationType**is the probability distribution function of the innovations/residuals (see **INNOVATION TYPE**)

- INNOVATION GAUSSIAN Gaussian or Normal Distribution
- INNOVATION TDIST Student's T-Distribution,
- INNOVATION_GED Generalized Error Distribution (GED)

[in] **nu** is the shape factor (or degrees of freedom) of the

innovations/residuals probability distribution function.

is the forecast time/horizon (expressed in terms of steps beyond end of

the time series).

[in] retType is a switch to select the type of value returned

1. Mean forecast

- 2. Forecast Error
- 3. Volatility term structure
- 4. Confidence interval lower limit

5. Confidence interval upper limit (see FORECAST RETVAL FUNC)

[in] alpha is the statistical significance level. If missing, a default of 5% is

assumed.

[out] retVal is the calculated forecast value

Remarks

- 1. The underlying model is described here.
- 2. By definition, the GARCH_FORE function return a constant value equal to the model mean (i.e. \ (\mu\)) for all horizons.
- 3. The time series is homogeneous or equally spaced.
- 4. The time series may include missing values (e.g. #N/A) at either end.
- 5. The number of parameters in the input argument alpha determines the order of the ARCH component model.
- 6. The number of parameters in the input argument beta determines the order of the GARCH component model.

Requirements

Header	SFSDK.H
Library	SFSDK.LIB
DLL	SFSDK.DLL

int __stdcall NDK_GARCH_FORE(double * pData, size_t nSize,

Namespace: NumXLAPI

Class: SFSDK

double * sigmas, Scope: Public Lifetime: Static size t nSigmaSize, double mu, const double * Alphas, size t p, const double * Betas, size_t q, WORD nInnovationType, double nu, size t nStep, WORD retType, double alpha, double * retVal)

Calculates the out-of-sample forecast statistics.

Returns

status code of the operation

Return values

NDK SUCCESS Operation successful

NDK_FAILED Operation unsuccessful. See Macros for full list.

Parameters

[in] **pData** is the univariate time series data (a one dimensional array).

[in] **nSize** is the number of observations in pData.

[in] **sigmas** is the univariate time series data (a one dimensional array of cells (e.g.

rows or columns)) of the last q realized volatilities.

is the number of elements in sigmas. Only the latest q observations are

used.

[in] **mu** is the GARCH model conditional mean (i.e. mu).

[in] **Alphas** are the parameters of the ARCH(p) component model (starting with the

lowest lag).

[in] **p** is the number of elements in Alphas array

[in] **Betas** are the parameters of the GARCH(g) component model (starting with

the lowest lag).

[in] **q** is the number of elements in Betas array

[in] **nInnovationType** is the probability distribution function of the innovations/residuals

(see INNOVATION_TYPE)

• INNOVATION GAUSSIAN Gaussian or Normal Distribution

• INNOVATION TDIST Student's T-Distribution,

• INNOVATION GED Generalized Error Distribution (GED)

[in] **nu** is the shape factor (or degrees of freedom) of the

innovations/residuals probability distribution function.

is the forecast time/horizon (expressed in terms of steps beyond end of

the time series).

[in] retType is a switch to select the type of value returned

1. Mean forecast

2. Forecast Error

3. Volatility term structure

4. Confidence interval lower limit

5. Confidence interval upper limit (see **FORECAST_RETVAL_FUNC**)

is the statistical significance level. If missing, a default of 5% is

assumed.

[out] retVal is the calculated forecast value

Remarks

[in] alpha

1. The underlying model is described **here**.

2. By definition, the GARCH_FORE function return a constant value equal to the model mean (i.e. \ (\mu\)) for all horizons.

3. The time series is homogeneous or equally spaced.

4. The time series may include missing values (e.g. #N/A) at either end.

5. The number of parameters in the input argument - alpha - determines the order of the ARCH component model.

6. The number of parameters in the input argument - beta - determines the order of the GARCH component model.

Exceptions

Exception Type	Condition			
None	N/A			

Requirements

Namespace	NumXLAPI
Class	SFSDK
Scope	Public
Lifetime	Static
Package	NumXLAPI.DLL

Examples

References

- * Hamilton, J.D.; <u>Time Series Analysis</u>, Princeton University Press (1994), ISBN 0-691-04289-6
- * Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740
- * D. S.G. Pollock; <u>Handbook of Time Series Analysis</u>, <u>Signal Processing</u>, <u>and Dynamics</u>; Academic Press; Har/Cdr edition(Nov 17, 1999), ISBN: 125609906
- * Box, Jenkins and Reisel; <u>Time Series Analysis: Forecasting and Control</u>; John Wiley & SONS.; 4th edition(Jun 30, 2008), ISBN: 470272848

See Also

[template("related")]