NDK_EWXCF

Last Modified on 04/15/2016 11:14 am CDT

- C/C++
- .Net

```
int __stdcall NDK_EWXCF(double * X,
double * Y,
size_t N,
double lambda,
size_t step,
double * retVal
)
```

Computes the correlation factor using the exponential-weighted correlation function.

NDK_EWXCF computes the correlation estimate using the exponential-weighted covariance (EWCOV) and volatility (EWMA/EWV) method for each time series.

Returns

status code of the operation

Return values

NDK_SUCCESSOperation successful NDK_FAILED Operation unsuccessful. See <u>Macros</u> for full list.

Parameters

- [in] **X** is the first univariate time series data (a one dimensional array).
- [in] **Y** is the second univariate time series data (a one dimensional array).
- [in] \mathbf{N} is the number of observations in X (or Y).
- [in] **lambda**is the smoothing parameter used for the exponential-weighting scheme. If missing, a default value of 0.94 is assumed.
- [in] step is the forecast time/horizon (expressed in terms of steps beyond the end of the time series X). If missing, a default value of 0 is assumed.

[out] retVal is the estimated value of the correlation factor.

Remarks

- 1. The time series are homogeneous or equally spaced.
- 2. The two time series must have identical size and time order.
- 3. The cross correlation function is defined as:
- \(\rho^{(xy)}_t=\frac{\sigma_t^{(xy)}}{{_x\sigma_t}\times{_y\sigma_t}\)
- $(\sum_{t-1}^{(xy)} = \lambda_{t-1}^{(xy)}+(1-\lambda_x^{t-1}y_{t-1}))$
- $(x\sigma_t^2=\lambda\times{x\sigma_{t-1}^2}+(1-\lambda)x_{t-1}^2)$
- $(_y\sigma_t^2=\lambda\times{_y\sigma_{t-1}^2}+(1-\lambda)y_{t-1}^2))$,

where:

- \(\rho^{(xy)}_t\) is the sample correlation between X and Y at time t.
- \(\sigma_t^{(xy)}\) is the sample exponential-weighted covariance between X and Y at time t.
- \(_x\sigma_t\) is the sample exponential-weighted volatility for the time series X at time t.
- \(_y\sigma_t\) is the sample exponential-weighted volatility for the time series Y at time t.
- \(\lambda\) is the smoothing factor used in the exponential-weighted volatility and covariance calculations.

Requirements

Header	SFSDK.H
Library	SFSDK.LIB
DLL	SFSDK.DLL

Examples

int NDK_EWXCF	(double[]	pData1
	double[]	pData2
	UIntPtr	nSize,
	double	lambda
	UIntPtr	nStep,
	out double	retVal
)	

Namespace: NumXLAPI Class: SFSDK Scope: Public Lifetime: Static

NDK_EWXCF computes the correlation estimate using the exponential-weighted covariance (EWCOV) and volatility (EWMA/EWV) method for each time series.

Return Value

a value from NDK_RETCODE enumeration for the status of the call.

NDK_SUCCESSoperation successfulErrorError Code

Parameters

- [in] **pData1** is the first univariate time series data (a one dimensional array).
- [in] **pData2** is the second univariate time series data (a one dimensional array).
- [in] **nSize** is the number of observations in pData1 (or pData2).
- [in] **lambda**is the smoothing parameter used for the exponential-weighting scheme. If missing, a default value of 0.94 is assumed.
- [in] nStep is the forecast time/horizon (expressed in terms of steps beyond the end of the time series X). If missing, a default value of 0 is assumed.
- [out] retVal is the estimated value of the correlation factor.

Remarks

Exceptions

Exception Type	Condition
None	N/A

Requirements

Namespace	NumXLAPI
Class	SFSDK
Scope	Public
Lifetime	Static
Package	NumXLAPI.DLL

Examples

References

Hamilton, J .D.; Time Series Analysis, Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]