NDK EGARCH PARAM

Last Modified on 07/15/2016 9:45 am CDT

- C/C++
- .Net

Returns an array of cells for the initial (non-optimal), optimal or standard errors of the model's parameters.

Returns

status code of the operation

Return values

NDK_SUCCESS Operation successful

NDK_FAILED Operation unsuccessful. See Macros for full list.

Parameters

[in]	pData	is the univariate time series data (a one dimensional array).
[in]	nSize	is the number of observations in pData.
[in,out]	mu	is the EGARCH model conditional mean (i.e. mu).
[in,out]	Alphas	are the parameters of the ARCH(p) component model (starting with
		the lowest lag).
[in]	р	is the number of elements in Alphas array
[in,out]	Gammas	are the leverage parameters (starting with the lowest lag).
[in]	g	is the number of elements in Gammas. Must be equal to (p-1).
[in,out]	Betas	are the parameters of the $GARCH(q)$ component model (starting with
		the lowest lag).
[in]	q	is the number of elements in Betas array
[in]	nInnovationType	is the probability distribution function of the innovations/residuals

(see INNOVATION_TYPE)

• INNOVATION GAUSSIAN Gaussian Distribution (default)

INNOVATION_TDIST Student's T-Distribution,

• INNOVATION GED Generalized Error Distribution (GED)

[in, out] **nu** is the shape factor (or degrees of freedom) of the

innovations/residuals probability distribution function.

retType is a switch to select the type of value returned: 1= Quick Guess,

2=Calibrated, 3= Std. Errors (see MODEL RETVAL FUNC)

[in] maxIter is the maximum number of iterations used to calibrate the model. If

missing or less than 100, the default maximum of 100 is assumed.

Remarks

1. The underlying model is described **here**.

2. The time series is homogeneous or equally spaced.

3. The time series may include missing values (e.g. #N/A) at either end.

Requirements

Header	SFSDK.H	
Library	SFSDK.LIB	
DLL	SFSDK.DLL	

```
int NDK_EGARCH_PARAM(double[] pData,
```

UIntPtr nSize,

double[] Alphas,

UIntPtr p,

double[] Gammas,

double[] Betas,

UIntPtr q,

short nlnnovationType,

ref double nu,

short retType,

UIntPtr maxIter

)

Returns an array of cells for the initial (non-optimal), optimal or standard errors of the model's parameters.

Return Value

a value from NDK_RETCODE enumeration for the status of the call.

Namespace: NumXLAPI

Class: SFSDK Scope: Public Lifetime: Static

NDK SUCCESS operation successful

Error Code

Parameters

[in] pData	is the univariate	time series data	(a one dimensional array).
------------	-------------------	------------------	----------------------------

is the number of observations in pData.

[in, out] mu is the EGARCH model conditional mean (i.e. mu).

[in, out] Alphas are the parameters of the ARCH(p) component model (starting with

the lowest lag).

[in] **p** is the number of elements in Alphas array

[in, out] Gammas are the leverage parameters (starting with the lowest lag).

[in] g is the number of elements in Gammas. Must be equal to (p-1).

[in, out] Betas are the parameters of the GARCH(q) component model (starting with

the lowest lag).

[in] **q** is the number of elements in Betas array

nInnovationType is the probability distribution function of the innovations/residuals

(see INNOVATION_TYPE)

• INNOVATION GAUSSIAN Gaussian Distribution (default)

• INNOVATION_TDIST Student's T-Distribution,

• INNOVATION GED Generalized Error Distribution (GED)

[in, out] **nu** is the shape factor (or degrees of freedom) of the

innovations/residuals probability distribution function.

retType is a switch to select the type of value returned: 1= Quick Guess,

2=Calibrated, 3= Std. Errors (see MODEL_RETVAL_FUNC)

[in] maxIter is the maximum number of iterations used to calibrate the model. If

missing or less than 100, the default maximum of 100 is assumed.

Remarks

- 1. The underlying model is described here.
- 2. The time series is homogeneous or equally spaced.
- 3. The time series may include missing values (e.g. #N/A) at either end.

Exceptions

Exception Type	Condition
None	N/A

Requirements

Namespace	NumXLAPI	
Class	SFSDK	

Scope	Public	
Lifetime	Static	
Package	NumXLAPI.DLL	

Examples

References

Hamilton, J.D.; Time Series Analysis, Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]