NDK_DESMTH

Last Modified on 07/07/2016 10:58 am CDT

- C/C++
- .Net

```
int __stdcall NDK_DESMTH(double * pData,
size_t nSize,
BOOL bAscending,
double * alpha,
double * beta,
int xlHorizon,
BOOL bOptimize,
double * retVal
)
```

Returns the (Holt-Winter's) double exponential smoothing estimate of the value of X at time T+m.

Returns

status code of the operation

Return values

NDK_SUCCESS Operation successful

NDK_FAILED Operation unsuccessful. See <u>Macros</u> for full list.

Parameters

[in]	pData	is the univariate time series data (a one dimensional array).
[in]	nSize	is the number of elements in pData.
[in]	bAscending	gis the time order in the data series (i.e. the first data point's corresponding
		date (earliest date=1 (default), latest date=0)).
[in]	alpha	is the data smoothing factor (alpha should be between zero and one
		(exclusive)).
[in]	beta	is the trend smoothing factor (beta should be between zero and one
		(exclusive)).
[in]	xlHorizon	is the forecast time horizon beyond the end of X. If missing, a default value
		of 0 (latest or end of X) is assumed.
[in]	bOptimize	is a flag (True/False) for searching and using the optimal value of the
		smoothing factor. If missing or omitted, optimize is assumed false.
[out]	retVal	is the calculated value of this function.

Remarks

1. The double exponential smoothing function (F_{T+m}) is defined as follow: $[S_1=Y_1] \\ [B_1=\frac{Y_T-Y_1}{T-1}] \\ [S_{tsucc 1}= \lambda + B_{t+1}) \\ [B_{tsucc 1}= beta (S_t-S_{t-1})+(1-beta) \\ [B_{tsucc 1}] \\ [E_{tsucc 1}] \\$

 $[F_{T+m}=S_{T+m} B_{T}]$ Where:

- (X_t) is the value of the time series at time t.
- $\circ\ \(T\)$ is the time of the latest observation in the sample data.
- \(\alpha\) is the smoothing factor.
- \(\beta\) is the trend smoothing factor.
- (F_{T+m}) is the output of the algorithm at m steps past the end of the sample.
- 2. To search for the optimal values of the smoothing factors (i.e. alpha and Beta), the time series must have three (3) or more non-missing observations.
- 3. The time series is homogeneous or equally spaced.
- 4. The time series may include missing values (e.g. NaN) at either end.

Requirements

Header	SFSDK.H
Library	SFSDK.LIB
DLL	SFSDK.DLL

Examples

int NDK_DESMTH(double[]	pData,
int	nSize,
BOOL	bAscending,
ref doub	le alpha,
ref doub	le beta,
int	xlHorizon,
BOOL	bOptimize,
ref doub	le retVal
)	

Namespace: NumXLAPI Class: SFSDK Scope: Public Lifetime: Static

Returns the (Holt-Winter's) double exponential smoothing estimate of the value of X at time T+m.

Returns

status code of the operation

Return values

NDK SUCCESS Operation successful

NDK_FAILED Operation unsuccessful. See <u>Macros</u> for full list.

Parameters

- [in] **pData** is the univariate time series data (a one dimensional array).
- [in] **nSize** is the number of elements in pData.
- [in] **bAscending**is the time order in the data series (i.e. the first data point's corresponding date (earliest date=1 (default), latest date=0)).
- [in] **alpha** is the data smoothing factor (alpha should be between zero and one (exclusive)).
- [in] **beta** is the trend smoothing factor (beta should be between zero and one (exclusive)).
- [in] **xlHorizon** is the forecast time horizon beyond the end of X. If missing, a default value of 0 (latest or end of X) is assumed.
- [in] bOptimize is a flag (True/False) for searching and using the optimal value of the smoothing factor. If missing or omitted, optimize is assumed false. [out]retVal is the calculated value of this function.

Remarks

- 1. The double exponential smoothing function (F_{T+m}) is defined as follow: $[S_1=Y_1] \\ [B_1=\frac{Y_T-Y_1}{T-1}] \\ [S_{tsucc 1}= \alpha (S_{t-1} + B_{t-1})] \\ [B_{tsucc 1}= beta (S_{t-2}_{t-1}) + (1-beta) \\ [B_{tsucc 1}= beta$
 - $[F_{T+m}=S_{T+m} B_{T}]$ Where:
 - $\circ \ \ (X_t\)$ is the value of the time series at time t.
 - $\circ\ \ (T\)$ is the time of the latest observation in the sample data.
 - \(\alpha\) is the smoothing factor.
 - \(\beta\) is the trend smoothing factor.
 - (F_{T+m}) is the output of the algorithm at m steps past the end of the sample.
- 2. To search for the optimal values of the smoothing factors (i.e. alpha and Beta), the time series must have three (3) or more non-missing observations.
- 3. The time series is homogeneous or equally spaced.
- 4. The time series may include missing values (e.g. NaN) at either end.

Exceptions

Exception Type	Condition
None	N/A

Requirements

Namespace	NumXLAPI

	Class	SFSDK
	Scope	Public
	Lifetime	Static
	Package	NumXLAPI.DLL
Examples		

References

Hamilton, J .D.; Time Series Analysis, Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]