NDK_COLNRTY_TEST

Last Modified on 04/20/2016 12:38 pm CDT

- C/C++
- .Net

intstdcall NDK_COLNRTY_TEST(double **		XX,
	size_t	Ν,
	size_t	Μ,
	LPBYTE	mask,
	size_t	nMaskLen,
COLNRTY_TEST_TYP		nMethod,
	WORD	nCollndex,
	double *	retVal
)	

Returns the collinearity test statistics for a set of input variables.

Returns

status code of the operation

Return values

NDK_SUCCESS Operation successful

NDK_FAILED Operation unsuccessful. See <u>Macros</u> for full list.

Parameters

- [in] **XX** is the input variables matrix data (two dimensional).
- [in] **N** is the number of rows (observations) in XX.
- [in] **M** is the number of columns (variables) in XX.
- [in] **mask** is the boolean array to select a subset of the input variables in X. If NULL, all variables in X are included.
- [in] **nMaskLen**is the number of elements in the mask. Must be zero or equal to M.
- [in] **nMethod** is the multi-colinearity measure to compute

Method	Value	Description
COLNRTY_CN	1	Condition Number.
COLNRTY_VIF	2	Variation Inflation Factor (VIF)
COLNRTY_DET	3	Determinant
COLNRTY_EIGEN	4	Eigenvalues

- [in] **nCollndex** is a switch to designate the explanatory variable to examine (not required for condition number).
- [out] **retVal** is the calculated statistics of collinearity.

Remarks

• The sample data may include missing values.

- Each column in the input matrix corresponds to a separate variable.
- Each row in the input matrix corresponds to an observation.
- Observations (i.e. row) with missing values are removed.
- In the variance inflation factor (VIF) method, a series of regressions models are constructed, where one variable is the dependent variable against the remaining predictors.
- \[\textrm{Tolerance}_i = 1-R_i^2\] \[\textrm{VIF}_i = \frac{1}{\textrm{Tolearance}_i} = \frac{1}{1-R i²}\] Where:
 - (R_i^2) is the coefficient of determination of a regression of explanator (i) on all the other explanators.
- A tolerance of less than 0.20 or 0.10 and/or a VIF of 5 or 10 and above indicates a multicollinearity problem.
- The condition number (\(\kappa\)) test is a standard measure of ill-conditioning in a matrix; It will indicate that the inversion of the matrix is numerically unstable with finite-precision numbers (standard computer floats and doubles).
- \[X = \begin{bmatrix} 1 & X_{11} & \cdots & X_{k1} \\ \vdots & \vdots & & \vdots \\ 1 & X_{1N} & \cdots & X {kN} \end{bmatrix} \] \[\kappa = \sqrt{\frac{\lambda {max}}{\lambda {min}}}\] Where:
 - \(\lambda_{max}\) is the maximum eigenvalue.
 - \(\lambda {min}\) is the minimum eigenvalue.
- As a rule of thumb, a condition number (\$\kappa\$) greater or equal to 30 indicates a severe multi-collinearity problem.
- The CollinearityTest function is available starting with version 1.60 APACHE.

Requirements

Header	SFSDK.H
Library	SFSDK.LIB
DLL	SFSDK.DLL

Examples

int NDK COLNRTY TEST(ref UIntPtr **UIntPtr**

UIntPtr

pData,

Namespace: NumXLAPI Class: SFSDK Scope: Public

nSize, nVars,

Byte[]mask,UIntPtrnMaskLen,COLNRTY_TEST_TYPE nMethod,shortnColIndex,ref doubleretVal

Returns the collinearity test statistics for a set of input variables.

Returns

status code of the operation

Return values

NDK_SUCCESSOperation successfulNDK_FAILEDOperation unsuccessful. See Macros for full list.

Parameters

- [in] **XX** is the input variables matrix data (two dimensional).
- [in] N is the number of rows (observations) in XX.
- [in] M is the number of columns (variables) in XX.
- [in] **mask** is the boolean array to select a subset of the input variables in X. If NULL, all variables in X are included.
- [in] **nMaskLen**is the number of elements in the mask. Must be zero or equal to M.
- [in] **nMethod** is the multi-colinearity measure to compute

Method	Value	Description
COLNRTY_CN	1	Condition Number.
COLNRTY_VIF	2	Variation Inflation Factor (VIF)
COLNRTY_DET	3	Determinant
COLNRTY_EIGEN	4	Eigenvalues

[in] **nCollndex** is a switch to designate the explanatory variable to examine (not required for

condition number).

[out] retVal is the calculated statistics of collinearity.

Remarks

- The sample data may include missing values.
- Each column in the input matrix corresponds to a separate variable.
- Each row in the input matrix corresponds to an observation.
- Observations (i.e. row) with missing values are removed.
- In the variance inflation factor (VIF) method, a series of regressions models are constructed, where one variable is the dependent variable against the remaining predictors.
- $[textrm{Tolerance}_i = 1-R_i^2] [textrm{VIF}_i = frac{1}{textrm{Tolearance}_i} = frac{1}{1-R_i^2}] Where:$
 - \(R_i^2\) is the coefficient of determination of a regression of explanator \(i\) on all the other explanators.

- A tolerance of less than 0.20 or 0.10 and/or a VIF of 5 or 10 and above indicates a multicollinearity problem.
- The condition number (\(\kappa\)) test is a standard measure of ill-conditioning in a matrix; It will indicate that the inversion of the matrix is numerically unstable with finite-precision numbers (standard computer floats and doubles).
- \[X = \begin{bmatrix} 1 & X_{11} & \cdots & X_{k1} \\ \vdots & \vdots & \vdots \\ 1 & X_{1N} & \cdots & X_{kN} \end{bmatrix} \] \[\kappa = \sqrt{\frac{\lambda_{max}}{\lambda_{min}}}]
 Where:
 - \(\lambda_{max}\) is the maximum eigenvalue.
 - \(\lambda_{min}\) is the minimum eigenvalue.
- As a rule of thumb, a condition number (\$\kappa\$) greater or equal to 30 indicates a severe multi-collinearity problem.
- The CollinearityTest function is available starting with version 1.60 APACHE.

Exceptions

Exception Type	Condition
None	N/A

Requirements

Namespace	NumXLAPI
Class	SFSDK
Scope	Public
Lifetime	Static
Package	NumXLAPI.DLL

Examples

References

Hamilton, J .D.; Time Series Analysis , Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740