NDK_ARIMA_VALIDATE

Last Modified on 07/08/2016 10:35 am CDT

- C/C++
- .Net

```
int __stdcall NDK_ARIMA_VALIDATE(double mean,
double sigma,
WORD nIntegral,
double * phis,
size_t p,
double * thetas,
size_t q
)
```

Examines the model's parameters for stability constraints (e.g. stationary, etc.).

Returns

status code of the operation

Return values

NDK_SUCCESSOperation successfulNDK_FAILEDOperation unsuccessful. See Macros for full list.

Parameters

[in] mean	is the ARMA model mean (i.e. mu).		
[in] sigma	is the standard deviation of the model's residuals/innovations.		
[in] nIntegral is the integration order.			
[in] phis	are the parameters of the $AR(p)$ component model (starting with the lowest lag).		
[in] p	is the number of elements in phis (order of AR component)		
[in] thetas	are the parameters of the $MA(q)$ component model (starting with the lowest lag).		
[in] q	is the number of elements in thetas (order of MA component)		

Remarks

- 1. The underlying model is described here.
- 2. NDK_ARIMA_VALIDATE checks the ARMA model for stability: stationarity, invertibility, and causality.
- 3. The integration order argument (d) must be a positive integer.
- 4. The long-run mean can take any value or may be omitted, in which case a zero value is assumed.
- 5. The residuals/innovations standard deviation (sigma) must be greater than zero.
- 6. For the input argument (phi):
 - The input argument is optional and can be omitted, in which case no AR component is included.

- The order of the parameters starts with the lowest lag.
- The order of the AR component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
- 7. For the input argument (theta):
 - The input argument is optional and can be omitted, in which case no MA component is included.
 - The order of the parameters starts with the lowest lag.
 - The order of the MA component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).

Requirements

Header	SFSDK.H
Library	SFSDK.LIB
DLL	SFSDK.DLL

Examples

int NDK_ARIMA_VALIDATE(double mean,	Namespace: NumXLAPI
double sigma,	Class: SFSDK
short nIntegral,	Scope: Public
double[] phis,	Lifetime: Static
UIntPtr p,	
double thetas,	
UIntPtr q	
)	

Examines the model's parameters for stability constraints (e.g. stationary, etc.).

Return Value

a value from NDK_RETCODE enumeration for the status of the call.

 $\textbf{NDK_SUCCESS} \text{ operation successful}$

Error Code

Error

Parameters

- [in] **mean** is the ARMA model mean (i.e. mu).
- [in] sigma is the standard deviation of the model's residuals/innovations.
- [in] **nIntegral** is the integration order.
- [in] **phis** are the parameters of the AR(p) component model (starting with the lowest lag).
- [in] **p** is the number of elements in phis (order of AR component)
- [in] **thetas** are the parameters of the MA(q) component model (starting with the lowest lag).
- [in] **q** is the number of elements in thetas (order of MA component)

Remarks

- 1. The underlying model is described here.
- 2. NDK_ARIMA_VALIDATE checks the ARMA model for stability: stationarity, invertibility, and causality.
- 3. The integration order argument (d) must be a positive integer.
- 4. The long-run mean can take any value or may be omitted, in which case a zero value is assumed.
- 5. The residuals/innovations standard deviation (sigma) must be greater than zero.
- 6. For the input argument (phi):
 - The input argument is optional and can be omitted, in which case no AR component is included.
 - The order of the parameters starts with the lowest lag.
 - The order of the AR component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
- 7. For the input argument (theta):
 - The input argument is optional and can be omitted, in which case no MA component is included.
 - The order of the parameters starts with the lowest lag.
 - The order of the MA component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).

Exceptions

Exception Type	Condition
None	N/A

Requirements

Namespace	NumXLAPI
Class	SFSDK
Scope	Public

Lifetime	Static
Package	NumXLAPI.DLL

References

Hamilton, J .D.; Time Series Analysis , Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]