NDK_ARIMA_GOF

Last Modified on 07/08/2016 10:10 am CDT

- C/C++
- .Net

intstdcall NDK_ARIMA_GO	F(double *	Х,
	size_t	nSize,
	double	mean,
	double	sigma,
	WORD	nintegral,
	double *	phis,
	size_t	р,
	double *	thetas,
	size_t	q,
	GOODNESS_OF_FIT_FUN	CretType,
	double *	retVal
)	

Computes the log-likelihood ((LLF), Akaike Information Criterion (AIC) or other goodness of fit function of the ARIMA model.

Returns

status code of the operation

Return values

NDK_SUCCESSOperation successfulNDK_FAILEDOperation unsuccessful. See Macros for full list.

Parameters

- [in] **X** is the univariate time series data (a one dimensional array).
- [in] **nSize** is the number of observations in X.
- [in] **mean** is the ARMA model mean (i.e. mu).
- [in] **sigma** is the standard deviation of the model's residuals/innovations.
- [in] **nIntegral**is the model's integration order.
- [in] **phis** are the parameters of the AR(p) component model (starting with the lowest lag).
- [in] **p** is the number of elements in phis (order of AR component)
- [in] **thetas** are the parameters of the MA(q) component model (starting with the lowest lag).
- [in] **q** is the number of elements in thetas (order of MA component)
- $[\texttt{in}] \ \textbf{retType} \ \text{is a switch to select a fitness measure}$

Order Description

- 1 Log-Likelihood Function (LLF) (default)
- 2 Akaike Information Criterion (AIC)
- 3 Schwarz/Bayesian Information Criterion (SIC/BIC)
- 4 Hannan-Quinn information criterion (HQC)

Remarks

- 1. The underlying model is described here.
- 2. The time series is homogeneous or equally spaced.
- 3. The time series may include missing values (e.g. NaN) at either end.
- 4. The residuals/innovations standard deviation (i.e. \(\sigma\) should be greater than zero.
- 5. The ARMA model has independent and normally distributed residuals with constant variance. The ARMA log-likelihood function becomes: \[\ln L^* = -T\left(\ln 2\pi \hat \sigma^2+1\right)/2 \] Where:
 \(\hat \sigma\) is the standard deviation of the residuals.
- 6. The maximum likelihood estimation (MLE) is a statistical method for fitting a model to the data and providing estimates for the model's parameters.
- 7. The integration order argument (d) must be a positive integer.
- 8. The long-run mean can take any value or may be omitted, in which case a zero value is assumed.
- 9. The residuals/innovations standard deviation (sigma) must be greater than zero.
- 10. For the input argument (phi):
 - The input argument is optional and can be omitted, in which case no AR component is included.
 - The order of the parameters starts with the lowest lag.
 - One or more parameters can be missing or an error code (i.e. #NUM!, #VALUE!, etc.).
 - The order of the AR component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
- 11. For the input argument (theta):
 - The input argument is optional and can be omitted, in which case no MA component is included.
 - The order of the parameters starts with the lowest lag.
 - One or more values in the input argument can be missing or an error code (i.e. #NUM!, #VALUE!, etc.).
 - The order of the MA component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).

Requirements

Header	SFSDK.H
Library	SFSDK.LIB
DLL	SFSDK.DLL

Examples

NDK_ARIMA_GOF(double[]	pData,	Namespace: NumXLAPI
UIntPtr	nSize,	Class: SFSDK
double	mean,	Scope: Public
double	sigma,	Lifetime: Static
short	nIntegral,	
double[]	phis,	
UIntPtr	p,	
double[]	thetas,	
UIntPtr	q,	
GOODNESS_OF_FIT_I	FUNC retType,	
ref double	retVal	
)		

Computes the log-likelihood ((LLF), Akaike Information Criterion (AIC) or other goodness of fit function of the ARIMA model.

Return Value

a value from **NDK_RETCODE** enumeration for the status of the call.

NDK_SUCCESS operation successful Error Error Code

Parameters

- [in] **pData** is the univariate time series data (a one dimensional array).
- [in] **nSize** is the number of observations in pData.
- [in] **mean** is the ARMA model mean (i.e. mu).
- [in] sigma is the standard deviation of the model's residuals/innovations.
- [in] **nIntegral**is the model's integration order.
- [in] **phis** are the parameters of the AR(p) component model (starting with the lowest lag).
- [in] **p** is the number of elements in phis (order of AR component)
- [in] **thetas** are the parameters of the MA(q) component model (starting with the lowest lag).
- [in] **q** is the number of elements in thetas (order of MA component)
- [in] **retType** is a switch to select a fitness measure

Order Description

- 1 Log-Likelihood Function (LLF) (default)
- 2 Akaike Information Criterion (AIC)
- 3 Schwarz/Bayesian Information Criterion (SIC/BIC)
- 4 Hannan-Quinn information criterion (HQC)

Remarks

- 1. The underlying model is described here.
- 2. The time series is homogeneous or equally spaced.
- 3. The time series may include missing values (e.g. NaN) at either end.
- 4. The residuals/innovations standard deviation (i.e. \(\sigma\) should be greater than zero.
- 5. The ARMA model has independent and normally distributed residuals with constant variance. The ARMA log-likelihood function becomes: \[\ln L^* = -T\left(\ln 2\pi \hat \sigma^2+1\right)/2 \] Where:
 - \(\hat \sigma\) is the standard deviation of the residuals.
- 6. The maximum likelihood estimation (MLE) is a statistical method for fitting a model to the data and providing estimates for the model's parameters.
- 7. The integration order argument (d) must be a positive integer.
- 8. The long-run mean can take any value or may be omitted, in which case a zero value is assumed.
- 9. The residuals/innovations standard deviation (sigma) must be greater than zero.
- 10. For the input argument (phi):
 - The input argument is optional and can be omitted, in which case no AR component is included.
 - The order of the parameters starts with the lowest lag.
 - One or more parameters can be missing or an error code (i.e. #NUM!, #VALUE!, etc.).
 - The order of the AR component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
- 11. For the input argument (theta):
 - The input argument is optional and can be omitted, in which case no MA component is included.
 - The order of the parameters starts with the lowest lag.
 - One or more values in the input argument can be missing or an error code (i.e. #NUM!, #VALUE!, etc.).
 - The order of the MA component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).

Exceptions

Exception Type	Condition
None	N/A

Requirements

Namespace	NumXLAPI
Class	SFSDK

Scope	Public
Lifetime	Static
Package	NumXLAPI.DLL

References

Hamilton, J .D.; Time Series Analysis, Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]