NDK_ARCHTEST

Last Modified on 07/06/2016 12:12 pm CDT

- C/C++
- .Net

intstdcall NDK_ARCHTES	T(double [;]	* X,
	size_t	Ν,
	size_t	Κ,
	double	alpha,
	WORD	method,
	WORD	retType,
	double [;]	* retVal
)	

Calculates the p-value of the ARCH effect test (i.e. the white-noise test for the squared time series).

Returns

status code of the operation

Return values

NDK_SUCCESS Operation successful

NDK_FAILED Operation unsuccessful. See <u>Macros</u> for full list.

Parameters

- [in] **X** is the univariate time series data (a one dimensional array).
- [in] N is the number of observations in X.
- [in] **K** is the lag order (e.g. k=0 (no lag), k=1 (1st lag), etc.).
- [in] **alpha** is the statistical significance level. If missing, a default of 5% is assumed.
- [in] **method** is the statistical test to perform (1=Ljung-Box).
- [in] **retType** is a switch to select the return output:

	Method	Value	Description
	TEST_PVALUE	1	P-Value
	TEST_SCORE	2	Test statistics (aka score)
	TEST_CRITICALVALUE	E 3	Critical value.
rotVal	is the calculated test statistics		

[out] retVal is the calculated test statistics.

Remarks

- The time series is homogeneous or equally spaced.
- The time series may include missing values (e.g. NaN) at either end.
- The lag order (k) must be less than the time series size, or an error value (#VALUE!) is returned.
- The test hypothesis for the population autocorrelation: \[H_{0}: \rho_{k}=\rho_0\] \[H_{1}: \rho_{k}\neq a\] Where:

- \(H_{o}\) is the null hypothesis.
- \(H_{1}) is the alternate hypothesis.
- \(\hat \rho_o\) is the assumed population autocorrelation function for lag k.
- \(k\) is the lag order.
- Assuming a normal distributed population, the sample autocorrelation has a normal distribution: \[\hat \rho_k \sim N(\rho_k,\sigma_{\rho_k}^2)\] Where:
 - \(\hat \rho_k \) is the sample autocorrelation for lag k.
 - \(\rho_k \) is the population autocorrelation for lag k.
 - \(\sigma_{\rho_k}\) is the standard deviation of the sample autocorrelation function for lag k.
- The variance of the sample autocorrelation is computed as: $[\sigma_{\rho_k}^2 = \frac{1+\sum_{j=1}^{k-1}\hat\rho_j^2}{T}]$ Where:
 - (\sum_{k}) is the standard error of the sample autocorrelation for lag k.
 - \(T\) is the sample data size.
 - \(\hat\rho_j\) is the sample autocorrelation function for lag j.
 - \(k\) is the lag order.
- This is a two-sides (i.e. two-tails) test, so the computed p-value should be compared with half of the significance level (\(\alpha/2\)).

Requirements

Header	SFSDK.H
Library	SFSDK.LIB
DLL	SFSDK.DLL

Examples

int NDK_ARCHTEST(double[]	pData,
UInPtr	nSize,
int	nLag,
double	alpha,
UInt16	argMethod
UInt16	retType,
out double	retVal

Namespace: NumXLAPI Class: SFSDK Scope: Public Lifetime: Static Calculates the p-value of the ARCH effect test (i.e. the white-noise test for the squared time series).

Returns

status code of the operation

)

Return values

NDK_SUCCESS Operation successful

NDK_FAILED Operation unsuccessful. See <u>Macros</u> for full list.

Parameters

- [in] **pData** is the univariate time series data (a one dimensional array).
- [in] **nSize** is the number of observations in pData.
- [in] **nLag** is the lag order (e.g. k=0 (no lag), k=1 (1st lag), etc.).
- [in] **alpha** is the statistical significance level. If missing, a default of 5% is assumed.
- [in] **argMethod**is the statistical test to perform (1=Ljung-Box).
- [in] **retType** is a switch to select the return output:

	Method	Value	Description
	TEST_PVALUE	1	P-Value
	TEST_SCORE	2	Test statistics (aka score)
	TEST_CRITICALVALUE	TEST_CRITICALVALUE 3	
[out]retVal	is the calculated test statistics.		

Remarks

- The time series is homogeneous or equally spaced.
- The time series may include missing values (e.g. NaN) at either end.
- The lag order (k) must be less than the time series size, or an error value (#VALUE!) is returned.
- The test hypothesis for the population autocorrelation:

 $[H_{0}: \ho_{k}=\no_{1} [H_{1}: \ho_{k}\neq a] Where:$

- (H_{o}) is the null hypothesis.
- (H_{1}) is the alternate hypothesis.
- \(\hat \rho_o\) is the assumed population autocorrelation function for lag k.
- \(k\) is the lag order.
- Assuming a normal distributed population, the sample autocorrelation has a normal distribution: \[\hat \rho_k \sim N(\rho_k,\sigma_{\rho_k}^2)\] Where:
 - $\circ\ \$ (\hat \rho_k \) is the sample autocorrelation for lag k.

 - \(\sigma_{\rho_k}\) is the standard deviation of the sample autocorrelation function for lag k.
- The variance of the sample autocorrelation is computed as: \[\sigma_{\rho_k}^2 = \frac{1+\sum_{j=1}^{k-1}\hat\rho_j^2}{T} \] Where:

- \(\sigma_{\rho_k}) is the standard error of the sample autocorrelation for lag k.
- $\circ (T)$ is the sample data size.
- \(\hat\rho_j\) is the sample autocorrelation function for lag j.
- \(k\) is the lag order.
- This is a two-sides (i.e. two-tails) test, so the computed p-value should be compared with half of the significance level (\(\alpha/2\)).

Exceptions

Exception Type	Condition
None	N/A

Requirements

Namespace	NumXLAPI
Class	SFSDK
Scope	Public
Lifetime	Static
Package	NumXLAPI.DLL

Examples

References

Hull, John C.; Options, Futures and Other Derivatives Financial Times/ Prentice Hall (2011), ISBN 978-0132777421

Hans-Peter Deutsch; , Derivatives and Internal Models, Palgrave Macmillan (2002), ISBN 0333977068 Hamilton, J .D.; Time Series Analysis , Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]