SARIMAX

Last Modified on 03/11/2016 11:38 am CST

In principle, an SARIMAX model is a linear regression model that uses a SARIMA-type process (i.e. w_t) This model is useful in cases we suspect that residuals may exhibit a seasonal trend or pattern.

 $\label{eq:started_s$

Where:

- \(L \) is the lag (aka back-shift) operator.
- \(y_t \) is the observed output at time t.
- \(x_{k,t} \) is the k-th exogenous input variable at time t.
- \(\beta_k \) is the coefficient value for the k-th exogenous (explanatory) input variable.
- \(b \) is the number of exogenous input variables.
- \(w_t \) is the auto-correlated regression residuals.
- \(p \) is the order of the non-seasonal AR component.
- (P) is the order of the seasonal AR component.
- \(q \) is the order of the non-seasonal MA component.
- (Q) is the order of the seasonal MA component.
- \(s \) is the seasonal length.
- \(D \) is the seasonal integration order of the time series.
- \(\eta \) is a constant in the SARIMA model
- \(a_t\) is the innovation, shock or error term at time t.
- \(\{a_t\}\) time series observations are independent and identically distributed (i.e. i.i.d) and follow a Gaussian distribution (i.e. \(\Phi(0,\sigma^2)\))

Re-ordering the terms in the equation above and assuming the differenced (both seasonal and non-seasonal) results in a stationary time series ((z_t)) yields the following:

Remarks

- 1. The variance of the shocks is constant or time-invariant.
- 2. The order of an AR component process is solely determined by the order of the last lagged auto-regressive variable with a non-zero coefficient (i.e. $(w_{t-p}))$.
- The order of an MA component process is solely determined by the order of the last moving average variable with a non-zero coefficient (i.e. \(a_{t-q}\)).
- 4. In principle, you can have fewer parameters than the orders of the model.

Requirements	
Requirements	
T	
S	
н ^S F	
e S	
d D	
K	
I' H	
S	
L F	
i S	
b D	
r K	
а.	
r L	
уI	
В	
S	
F	
S	
D D	
L K	
Ц .	
D	
L	
L	
·	

References

Hamilton, J .D.; <u>Time Series Analysis</u>, Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; <u>Analysis of Financial Time Series</u> John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]