EGARCH Model

Last Modified on 03/11/2016 11:05 am CST

- (x_t) is the time series value at time t.
- \(\mu\) is the mean of GARCH model.
- \(a_t\) is the model's residual at time t.
- \(\sigma_t\) is the conditional standard deviation (i.e. volatility) at time t.
- \(p\) is the order of the ARCH component model.
- \(\alpha_o,\alpha_1,\alpha_2,...,\alpha_p\) are the parameters of the the ARCH component model.
- \(q\) is the order of the GARCH component model.
- \(\beta_1,\beta_2,...,\beta_q\) are the parameters of the the GARCH component model.
- \(\left[\epsilon_t\right]\) are the standardized residuals: \[\left[\epsilon_t \right] \sim i.i.d\] \[E\left[\epsilon_t\right]=0\] \[\mathit{VAR}\left[\epsilon_t\right]=1\]
- \(P_{\nu}\) is the probability distribution function for \(\epsilon_t\). Currently, the following distributions are supported:
 - 1. Normal distribution $[P_{nu} = N(0,1)]$
 - 2. Student's t-distribution $\left[P_{\ln 4} = t_{\ln 4}(0,1)\right] \left[\ln 4 \sec 4\right]$
 - 3. Generalized error distribution (GED) $P_{\ln } = \operatorname{L}(0,1) \left[\ln \operatorname{L}(0,1) \right] \left[\ln \operatorname{L}(0,1) \right]$

Remarks

- 1. The E-GARCH model differs from GARCH in several ways. For instance, it used the logged conditional variances to relax the positiveness constraint of model coefficients
- 2. EGARCH(p,q) model has 2p+q+2 estimated parameters

See Also

[template("related")]