
.Net Development
Last Mo d ifie d o n 0 1/18 /20 17 5:51 p m CST

For .Net development using NumXL SDK, you'll need one wrapper DLL f or each platf orm.

NumXLAPI.dll.

The NumXL SDK f iles f or C/C++ development and examples can be f ound on the download page . For
the latest development and examples, you can pull the SDK project on GitHub.

1. Co mpiler Dependency

There is no direct dependency between the wrapper DLL (NumXLAPi.dll) and your development tool.
Nevertheless, the wrapper DLL requires a .Net f ramework version 3.5 or later installed f or proper
operation.

The .Net SDK package comes in with pre-built securely signed wrapper DLL f or 32-bit and 64-bit
platf orms.

2. (Optional) Build Fro m So urces

Although, the included pre-built wrapper DLL (NumXLAPi.dll) is readily usable in a wide range of
development tools, we have made the source code available f or the rare occasion where you may wish
to build or digitally-sign your own libraries.

The .Net SDK package and the project repository on GitHub includes the source code and the project
f iles. The project is self -contained, and requires no external dependencies. To create create the
wrapper DLL, open the solution f ile (NumXLAPI.sln) in Microsof t Visual Studio and run a batch build f or
Windows x32 and x64 platf orms.

Note: If you are using a dif f erent development tool than Microsof t Visual Studio, you can use the
inf ormation here, but map the steps to match the UI of your development tool.

3. Directo ry Structure

To setup your development f olders, we recommend the
f ollowing structure. Where:

numxl-sdk-net f older contains all source f iles f or the .NET
SDK Wrapper (i.e. NumXLAPI.dll)
output f older contains the executable binaries in NumXL and
the SDK
proj f older is where you maintain the source code f or your
custom application

4. Hello Wo rld! Applicatio n

Using Visual Studio menu, select "File" → New → Project.

1. Project template: "Other Languages" → Visual C# Win32 → Console

Application

2. Name: TestApp

3. Location: (using the directory structure above)

4. Create Directory f or Solution: Uncheck

Click "OK" when done. Microsof t Visual Studio will create the new C# console
project - TestApp - and all its f iles.

Note: In this tutorial, we have chose Visual C# project, but you may choose
Visual Basic or any supported .Net language f or your custom application.

Using the menu, select "project" → " project properties "

Project configurations
1. Under "Application" tab (def ault), make sure the selected target .net

f ramework is 4.0 or higher.

2. Next, Select "Build" tab:

Select Conf iguration to All, and Platf orm to "x86 or x64"

Set the "Output Path" to your installation directory.

Save

3. Save the project changes

Project References
1. Next, using the solution explorer view (the sidebar), select the ref erences

tab to expand.

2. Using the mouse right-click on Add Ref erence

3. In the Add Ref erence

dialog, click on the

Browse button, and

navigate to the platf orm

output f older and select

"NumXLAPI.dll"

4. Once selected, the NumXLAPI.dll is listed in the ref erence manager.

5. Click "OK" to close the ref erence manager dialog.

6. A new entry f or NumXLAPI.dll is added under ref erences in the solution explorer.

7. Select the NumXLAPI entry under ref erences, right-click and then select

"properties"

8. IMPORTANT : In the NumXLAPI properties sheet, set the "Copy Local" to
f alse.

9. Save the project settings

10. (Optional) Using the Conf iguration Manager, create a conf iguration f or x86 and/or x64 platf orms

Source Code

1. Open the main source code f ile (e.g. program.cs)

2. In the ref erences section, add the f ollowing statement:

#region Using Directives
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using NumXLAPI;
#endregion

namespace TestApp
{
 class Program
 {
 ///

 /// The main console application

3. Now, we need to init ialize the SDK by calling the NDK_Init f unction

 static void Main(string[] args)
 {
 NDK_RETCODE nRet = NDK_RETCODE.NDK_FAILED;

 string szAppName;
 String szMsg;

 szAppName = "TestApp";
 nRet = SFSDK.Init(szAppName, // We have TestApp.conf file
 null, // Use the license key in License.li
c
 null, // Use the activation code in Licens
e.lic
 null // Use the temp directory specified
in current user's profile
);
 if (nRet < NDK_RETCODE.NDK_SUCCESS)
 {
 szMsg = "NDK Initialization Failed";
 SFLOG.LogMsg(SFLOG_LEVEL.SFLOG_INFO, new System.Diagnostics.StackTra
ce(true).GetFrame(0).GetFileName(),
 new System.Diagnostics.StackFra
me(1, true).GetMethod().Name, "",
 new System.Diagnostics.StackTra
ce(true).GetFrame(0).GetFileLineNumber(), szMsg);

4. Upon successf ul init ialization, you may invoke any f unction in the SDK.

5. Finally, you will need to shutdown the SDK to close any open f ile and release resources.

nRet = SFSDK.Shutdown();
if (nRet < NDK_RETCODE.NDK_SUCCESS)
{
 szMsg = "NDK Shutdown failed";
 SFLOG.LogMsg(SFLOG_LEVEL.SFLOG_INFO, new System.Diagnostics.StackTrace(tru
e).GetFrame(0).GetFileName(),
 new System.Diagnostics.StackFrame(1,
true).GetMethod().Name, "",
 new System.Diagnostics.StackTrace(tru
e).GetFrame(0).GetFileLineNumber(), szMsg);
}

6. Done! Now, you may use next any NumXL SDK f unction as needed.

Common Questions & Issues:
1. Which Platform should I use?

 [Answer] In general, the Windows and the NumXL SDK platf orm (i.e. 32 or 64-bit) determines the

supported platf orm of your application:

On a 32-bit windows machine, you can only use the 32-bit NumXL SDK. In this case, use x86

(or any CPU) platf orm.

On a 64-bit windows machine and 32-bit NumXL SDK, you need to use the x86 platf orm.

On a 64-bit windows machine and 64-bit NumXL SDK, you can use either x64 (or any CPU)

platf orm.

2. Error: NumXLAPI.dll' must be strong signed in order to be marked as a prerequisite.
 [Answer] This is something to do with the assembly cache requiring all assemblies to be

strongly signed. This can be f ixed by clicking on "Application Files" in the publish tab, selecting

"NUMXLAPI" and making sure the publish status is set to "include" rather than "prerequisite"

3. Error: An attempt was made to load a program with an incorrect format.
 [Answer] This is a 32/64 bit issue so set compiler options to all conf igurations/all platf orms/any

CPU.

See Also

[template("related")]

