
C/C++ Development
Last Mo d ifie d o n 0 1/18 /20 17 5:47 p m CST

For C/C++ application development, you'll need two sets of f iles:

Header f iles
Import libraries

The NumXL SDK f iles f or C/C++ development and examples can be f ound on the download page . For
the latest development f iles and examples, you can pull the SDK project on GitHub.

1. Co mpiler Dependency

The header f iles of NumXL SDK f ully adhere to the ANSI standard C syntax. So in principle, any
development tool with a compatible ANSI compiler can be used with NumXL SDK.

For the Import Libraries, the C/C++ SDK package already includes libraries f iles f or Visual Studio 2010
and 2013 f or 32 and 64-bit platf orms.

Although, the included import libraries are readily usable in a wide range of development tools, we have
included the module def init ion source f iles f or the rare occasion where you may need to build your own
libraries.

2. (Optional) Build Fro m So urces

The C/C++ SDK package (or the project on GitHub) includes the NRE DLL module def init ion (*.def)
source f iles (under src f older). So, to create import libraries, issue the f ollowing commands f or each
source f ile:

LIB /MACHINE:x86 /DEF:<.DEF file name> /OUT:<.lib file name and path>
LIB /MACHINE:x64 /DEF:<.DEF file name> /OUT:<.lib file name and path>

Note: The LIB.exe is a f ront end utility to the Linker program and it is usually part of your compiler
installation.

Going f orward, we are using Visual Studio 2013. So if you use a dif f erent development tool, you can
use the inf ormation here, but map the steps to match the UI of your development tool.

3. Directo ry Structure

To setup your development f olders, we recommend the
f ollowing structure:

numxl-sdk-c f older contains all f iles in the SDK.
output f older contains the executable binaries in NumXL and
the SDK.
proj f older is where you maintain the source code f or your
custom application.

4. Hello Wo rld!" Applicatio n

Go to the project f older (e.g.), create a new project:

1. Project type: Visual C++ Projects → Win32 Console Application

2. Open the new project, and click on "Project Properties" under .

Open the project properties dialog, set the Conf iguration to "All Conf igurations", and platf orm to "All
Platf orms".

Project Configurations
1. Select "General" f rom the lef t taskbar, and set the

f ollowings:

Output Directory: path to the SDK binaries executables

(e.g.\output\$(Platf orm))

Intermediate Directory: local path relative to your project (e.g. $(Conf iguration)\$(Platf orm))

2. Next, under "C/C++" settings, select "General":

Additional Include Directories: path to NumXL SDK

header f iles f older

3. Under the linker settings, select "General":

Additional Library Directories: path to NumXL SDK

import libraries f older (e.g. numxl-sdk-

c\lib\VC100\$(Platf orm))

4. Under the linker settings, select "Input":

Additional Dependencies: SFSDK.lib, SFLOG.LIB,

SFLUC.LIB, SFDBM.LIB

5. Click "OK" and close the project properties dialog box.

Source code
1. In the main source f ile (e.g. TestApp.cpp>), add the

f ollowing header f iles: SFMacros.h, SFLogger.h, SFLUC.h,

SFDBM.h, and SFSDK.h

2. Then, init ialize the SDK by call NDK_Init.

// The AppName must match the configuration file basename.
// In this example, we must have HellpApp.conf in the output directory
std::wstring szAppName(L"HelloApp");

int nRet = NDK_Init(szAppName.c_str(), // we have HelloApp.conf
 NULL, // use the license key found in Li
cense.lic file
 NULL, // use the activation code in Lice
nse.lic file
 NULL // use the temp directory found in
 the current user's profile
);
if(nRet == NDK_SUCCESS){

}
else
{
 // something went wrong
}

3. Finally, shutdown the SDK by calling NDK_Shutdown to f ree resources.

int nRet = NDK_Init(szAppName.c_str(), NULL, NULL, NULL, NULL);
if(nRet == NDK_SUCCESS){

....
 nRet = NDK_Shutdown();// Close log file and free all resources.
}

4. Done! You may use next any NumXL SDK f unction as needed.

Remarks
1. NumXL SDK APIs (arguments and behavior) are designed to match their counterpart NumXL

worksheet f unctions as much as possible: (1) APIs are stateless, (2) robust, and (3) they can

generate a wealth of logging inf ormation to help with issues raised during development and

integration.

2. In essence, the NumXL SDK exports its f unctions using C-API interf ace and reports its status via

error codes as a return value.

3. The caller application does not get passed any exception generated during the course of the

f unction call.

See Also

[template("related")]

