NDK_XKURTTEST

Last Modified on 07/06/2016 12:26 pm CDT

- C/C++
- .Net

```
int __stdcall NDK_XKURTTEST(double * X,
size_t N,
double alpha,
WORD method,
WORD retType,
double * retVal
)
```

Calculates the p-value of the statistical test for the population excess kurtosis (4th moment).

Returns

status code of the operation

Return values

NDK_SUCCESSOperation successfulNDK_FAILEDOperation unsuccessful. See Macros for full list.

Parameters

- [in] **X** is the sample data (a one dimensional array).
- [in] **N** is the number of observations in X.
- [in] **alpha** is the statistical significance level. If missing, a default of 5% is assumed.
- [in] **method** is the statistical test to perform (1=parametric).
- [in] **retType**is a switch to select the return output:

Method	Value	Description
TEST_PVALUE	1	P-Value
TEST_SCORE	2	Test statistics (aka score)
TEST_CRITICALVALUE	3	Critical value.
is the calculated test statis	tics.	

[out] retVal is the calculated test statistics.

Remarks

1. The data sample may include missing values (e.g. #N/A).

2. The test hypothesis for the population excess kurtosis:

\[H_{o}: K=0\]

 $[H_{1}: K \ge 0],$

where:

- \(H_{o}\) is the null hypothesis.
- \(H_{1}) is the alternate hypothesis.

3. For the case in which the underlying population distribution is normal, the sample excess kurtosis also has a normal sampling distribution: $(\lambda K \otimes N(0, frac{24}{T}))$, where: (λK) is the sample excess kurtosis (i.e. 4th moment). (T) is the number of non-missing values in the data sample. (N(.)) is the normal (i.e. gaussian) probability distribution function. 4. Using a given data sample, the sample excess kurtosis is calculated as: $(\lambda K \times E^{T})^{T}(x_{t-\lambda} \otimes x)^{4}{(T-1)\lambda} \otimes x^{4}-3)$, where:

- \(\hat K(x)\) is the sample excess kurtosis.
- (x_i) is the i-th non-missing value in the data sample.
- \(T\) is the number of non-missing values in the data sample.
- \(\hat \sigma\) is the sample standard deviation.

5. The underlying population distribution is assumed normal (gaussian)..

6. This is a two-sides (i.e. two-tails) test, so the computed p-value should be compared with half of the significance level \(\frac{\alpha}{2}\).

Requirements

Header	SFSDK.H
Library	SFSDK.LIB
DLL	SFSDK.DLL

Examples

int NDK_XKURTTEST(double[]		pData,
	UIntPtr	nSize,
	double	alpha,
	UInt16	argMethod,
	UInt16	retType,
	out double	e retVal
)	

Namespace: NumXLAPI Class: SFSDK Scope: Public Lifetime: Static

Calculates the p-value of the statistical test for the population excess kurtosis (4th moment).

Returns

status code of the operation

Return values

NDK_SUCCESSOperation successfulNDK_FAILEDOperation unsuccessful. See Macros for full list.

Parameters

- [in] **pData** is the sample data (a one dimensional array).
- [in] **nSize** is the number of observations in pData.
- [in] **alpha** is the statistical significance level. If missing, a default of 5% is assumed.
- [in] argMethod is the statistical test to perform (1=parametric).
- [in] **retType** is a switch to select the return output:

	Method	Value	Description
	TEST_PVALUE	1	P-Value
	TEST_SCORE		Test statistics (aka score)
	TEST_CRITICALVALUE 3		Critical value.
[out] retVal is the calculated test statistics.			

Remarks

- 1. The data sample may include missing values (e.g. #N/A).
- 2. The test hypothesis for the population excess kurtosis:
- \[H_{0}: K=0\]

\[H_{1}: K\neq 0\],

where:

- \(H_{o}\) is the null hypothesis.
- \(H_{1}\) is the alternate hypothesis.

3. For the case in which the underlying population distribution is normal, the sample excess kurtosis also has a normal sampling distribution: $(\lambda K \sin N(0,\frac{24}{T}))$, where: (λk) is the sample excess kurtosis (i.e. 4th moment). (T) is the number of non-missing values in the data sample. (N(.)) is the normal (i.e. gaussian) probability distribution function.

4. Using a given data sample, the sample excess kurtosis is calculated as:

 $[K (x) = \frac{t=1}^T (x_t-bar x)^4 {(T-1)} x - \frac{x_1}{3},$

where:

- \(\hat K(x)\) is the sample excess kurtosis.
- (x_i) is the i-th non-missing value in the data sample.
- \(T\) is the number of non-missing values in the data sample.
- \(\hat \sigma\) is the sample standard deviation.

5. The underlying population distribution is assumed normal (gaussian)..

6. This is a two-sides (i.e. two-tails) test, so the computed p-value should be compared with half of the significance level \(\frac{\alpha}{2}\).

Exceptions

Exception Type	Condition
None	N/A

Requirements

Namespace	NumXLAPI
Class	SFSDK
Scope	Public
Lifetime	Static
Package	NumXLAPI.DLL

Examples

References

Hull, John C.; Options, Futures and Other Derivatives Financial Times/ Prentice Hall (2011), ISBN 978-0132777421

Hans-Peter Deutsch; , Derivatives and Internal Models, Palgrave Macmillan (2002), ISBN 0333977068 Hamilton, J .D.; Time Series Analysis , Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]