NDK TESMTH

Last Modified on 07/07/2016 11:45 am CDT

- C/C++
- .Net

Returns the (Winters's) triple exponential smoothing estimate of the value X at time T+m.

Returns

status code of the operation

Return values

NDK_SUCCESS Operation successful

NDK FAILED Operation unsuccessful. See Macros for full list.

Parameters

[in] pData

	•	• /
[in]	nSize	is the number of elements in pData.
[in]	bAscending	is the time order in the data series (i.e. the first data point's corresponding
		date (earliest date=1 (default), latest date=0)).
[in]	alpha	is the data smoothing factor (alpha should be between zero and one
		(exclusive)).
[in]	beta	is the trend smoothing factor (beta should be between zero and one
		(exclusive)).

is the univariate time series data (a one dimensional array).

 $\label{eq:continuity} \textbf{[in]} \quad \textbf{gamma} \qquad \quad \textbf{is the seasonal change smoothing factor (Gamma should be between zero}$

and one (exclusive)).

[in] L is the season length.

[in] **nHorizon** is the forecast time horizon beyond the end of pData. If missing, a default

value of 0 (latest or end of pData) is assumed.

[in] **bOptimize** is a flag (True/False) for searching and using optimal value of the smoothing

factor. If missing or omitted, optimize is assumed false.

[out] retVal is the calculated value of this function.

Remarks

- 1. The triple exponential smoothing function \(F_{T+m}\) is defined as follows: \[S_1=x_1\] \ [b_1=\frac{1}{L}(\frac{x_{L+1}-x_1}{L}+\frac{x_{L+2}-x_2}{L}+\frac{x_{L+3}-x_3} {L}+...+\frac{x_{L+1}-x_L}{L})\] \[S_{t>1}=\alpha \times \frac{x_{L+2}-x_2}{L}+\frac{x_{L+3}-x_3} {t-1}\] \[b_{t>1}=\alpha \times \frac{x_{L+2}-x_2}{t-1}+\frac{x_{L+3}-x_3} {t-1}-\frac{x_{L+1}-x_L}{L})\] \[S_{t>1}=\alpha \times \frac{x_{L+2}-x_2}{t-1}-\frac{x_{L+3}-x_3} {t-1}-\frac{x_{L+1}-x_L}{t-1}-\frac{x_{L+1}
 - \(X_t\) is the value of the time series at time t
 - \(T\) is the time of the latest observation in the sample data
 - \(\alpha\) is the smoothing factor
 - \(\beta\) is the trend smoothing factor
 - \(\gamma\) is the seasonal change smoothing factor
 - $\circ \ (F_{T+m})$ is the output of the algorithm at m steps past the end of the sample
- 2. To search for the optimal values of the smoothing factors (alpha, beta and gamma), the number of non-missing observations should be greater than on seasonal length (L).
- 3. The time series is homogeneous or equally spaced.
- 4. The time series may include missing values (NaN) at either end.

Requirements

Header	SFSDK.H
Library	SFSDK.LIB
DLL	SFSDK.DLL

Examples

int NDK_TESMTH(double[] pData,
 int nSize,
 BOOL bAscending,
 ref double alpha,
 ref double beta,
 ref double gamma,
 int seasonLength,
 int nHorizon,

BOOL

ref double retVal

bOptimize,

Namespace: NumXLAPI
Class: SFSDK

Scope: Public
Lifetime: Static

Returns the (Winters's) triple exponential smoothing estimate of the value of X at time T+m.

Returns

status code of the operation

Return values

NDK_SUCCESS Operation successful

NDK_FAILED Operation unsuccessful. See Macros for full list.

Parameters

[in] **pData** is the univariate time series data (a one dimensional array).

[in] **nSize** is the number of elements in pData.

[in] **bAscending** is the time order in the data series (i.e. the first data point's corresponding

date (earliest date=1 (default), latest date=0)).

[in] **alpha** is the data smoothing factor (alpha should be between zero and one

(exclusive)).

is the trend smoothing factor (beta should be between zero and one

(exclusive)).

[in] **gamma** is the seasonal change smoothing factor (Gamma should be between zero

and one (exclusive)).

[in] **seasonLength** is the season length.

[in] **nHorizon** is the forecast time horizon beyond the end of pData. If missing, a default

value of 0 (latest or end of pData) is assumed.

[in] **bOptimize** is a flag (True/False) for searching and using optimal value of the

smoothing factor. If missing or omitted, optimize is assumed false.

[out] retVal is the calculated value of this function.

Remarks

1. The triple exponential smoothing function (F_{T+m}) is defined as follows: $[S_1=x_1]$

 $1 = \frac{1}{L}(\frac{1}{L}(\frac{L+1}-x 1)^{L}+\frac{x {L+2}-x 2}{L}+\frac{x {L+3}-x 3}{L}}$

 $\{L\}+...+\frac{x_{L+L}-x_L}{L})\] \[S_{t>1}=\alpha \times \frac{x_t}{c_{t-L}}+(1-\alpha)(S_{t-1}+b_{$

1})\] \[b_{t>1}=\beta\times (s_t-s_{t-1})+(1-\beta)b_{t-1}\] \[c_{t>1}= \gamma \times \frac{x_t}

 $\{c_t\}+(1-\gamma c_t-1)/[F_{t+m}=(s_t+m)\times b_t)c_{t-L}+(m-1)/[m-1]$ Where:

- \(X_t\) is the value of the time series at time t
- \(T\) is the time of the latest observation in the sample data
- \(\alpha\) is the smoothing factor
- \(\beta\) is the trend smoothing factor
- \(\gamma\\) is the seasonal change smoothing factor
- \(F_{T+m}\) is the output of the algorithm at m steps past the end of the sample
- 2. To search for the optimal values of the smoothing factors (alpha, beta and gamma), the number of non-missing observations should be greater than on seasonal length (L).
- 3. The time series is homogeneous or equally spaced.

4. The time series may include missing values (NaN) at either end.

Exceptions

Exception Type	Condition
None	N/A

Requirements

Namespace	NumXLAPI
Class	SFSDK
Scope	Public
Lifetime	Static
Package	NumXLAPI.DLL

Examples

References

Hamilton, J.D.; Time Series Analysis, Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]