NDK_SESMTH

Last Modified on 07/07/2016 11:41 am CDT

- C/C++
- .Net

```
int __stdcall NDK_SESMTH(double * pData,
size_t nSize,
BOOL bAscending,
double * alpha,
int nHorizon,
BOOL bOptimize,
double * retVal
)
```

Returns the (Brown's) simple exponential (EMA) smoothing estimate of the value of pData at time t+m (based on the raw data up to time t).

Returns

status code of the operation

Return values

NDK_SUCCESS Operation successful

NDK_FAILED Operation unsuccessful. See <u>Macros</u> for full list.

Parameters

[in]	pData	is the univariate time series data (a one dimensional array).		
[in]	nSize	is the number of elements in pData.		
[in]	bAscending	Ascending is the time order in the data series (i.e. the first data point's corresponding		
		date (earliest date=1 (default), latest date=0)).		
[in]	alpha	is the smoothing factor (alpha should be between zero and one (exclusive)). If		
		missing or omitted, a value of 0.333 is used.		
[in]	nHorizon is the forecast time horizon beyond the end of pData. If missing, a default			
		value of 0 (latest or end of pData) is assumed.		
[in]	bOptimize	is a flag (True/False) for searching and using the optimal value of the		
		smoothing factor. If missing or omitted, optimize is assumed false.		
[out]	retVal	is the calculated value of this function.		

Remarks

- 1. The simple exponential smoothing function (S_t) is defined as follow: $[S_1=X_1] [S_t \succ 1] = \A (t-1) + (1-\A) S_{t-1}] [S_t \succ T] S_T] Where:$
 - $\circ \ \ (X_t)$ is the value of the time series at time t.

 - $\circ\$ \(\alpha\) is the smoothing factor.

- 2. The time series is homogeneous or equally spaced.
- 3. The time series may include missing values (e.g. NaN) at either end.
- 4. Exponential smoothing and moving average are similar in that they both assume a stationary, not trending, time series.
- 5. If a trend exists in the time series, the simple exponential lags behind the trend.
- 6. To search for the optimal values of the smoothing factor (alpha), the time series must have two(2) or more non-missing observations.
- 7. The exponential smoothing function differs from the weighted moving average (WMA) in that exponential smoothing takes into account all past data, whereas moving average only takes into account k past data points.

Requirements

Header	SFSDK.H
Library	SFSDK.LIB
DLL	SFSDK.DLL

Examples

int NDK_SESMTH(double[]	pData,	Namespace: NumXLAPI
int	nSize,	Class: SFSDK
BOOL	bAscending,	Scope: Public
ref double	alpha,	Lifetime: Static
int	nHorizon,	-
BOOL	bOptimize,	
ref double	retVal	
)		

Returns the (Brown's) simple exponential (EMA) smoothing estimate of the value of X at time t+m (based on the raw data up to time t).

Returns

status code of the operation

Return values

NDK SUCCESS Operation successful

NDK_FAILED Operation unsuccessful. See Macros for full list.

Parameters

- [in] **pData** is the univariate time series data (a one dimensional array).
- [in] **nSize** is the number of elements in pData.
- [in] **bAscending**is the time order in the data series (i.e. the first data point's corresponding date (earliest date=1 (default), latest date=0)).
- [in] **alpha** is the smoothing factor (alpha should be between zero and one (exclusive)). If missing or omitted, a value of 0.333 is used.
- [in] **nHorizon** is the forecast time horizon beyond the end of pdata. If missing, a default value of 0 (latest or end of pdata) is assumed.
- [in] **bOptimize** is a flag (True/False) for searching and using the optimal value of the smoothing factor. If missing or omitted, optimize is assumed false.
- [out] retVal is the calculated value of this function.

Remarks

- 1. The simple exponential smoothing function (S_t) is defined as follow: $[S_1=X_1] [S_t > 1] = \lambda + (1-\lambda) + (1-\lambda)$
 - $\circ \ \ (X_t\)$ is the value of the time series at time t.
 - $\circ\ \ (T\)$ is the time of the latest observation in the sample data.
 - \(\alpha\) is the smoothing factor.
- 2. The time series is homogeneous or equally spaced.
- 3. The time series may include missing values (e.g. NaN) at either end.
- 4. Exponential smoothing and moving average are similar in that they both assume a stationary, not trending, time series.
- 5. If a trend exists in the time series, the simple exponential lags behind the trend.
- To search for the optimal values of the smoothing factor (alpha), the time series must have two(2) or more non-missing observations.
- 7. The exponential smoothing function differs from the weighted moving average (WMA) in that exponential smoothing takes into account all past data, whereas moving average only takes into account k past data points.

Exceptions

Exception Type	Condition
None	N/A

Requirements

Nam	espace	NumXLAPI	
1			

Class	SFSDK
Scope	Public
Lifetime	Static
Package	NumXLAPI.DLL

Examples

References

Hamilton, J.D.; Time Series Analysis, Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]