NDK_SARIMAX_PARAM

Last Modified on 03/14/2016 1:28 pm CDT

- <u>C/C++</u>
- <u>.Net</u>

```
int _stdcall NDK_SARIMAX_PARAM ( double *
                                                 pData,
                         double **
                                                 pFactors,
                         size t
                                                 nSize,
                         size t
                                                 nFactors,
                         double *
                                                 fBetas,
                         double *
                                                 mean,
                         double *
                                                 sigma,
                         WORD
                                                 nIntegral,
                         double *
                                                 phis,
                         size t
                                                 p,
                         double *
                                                 thetas,
                         size t
                                                 q,
                         WORD
                                                 nSIntegral,
                         WORD
                                                 nSPeriod,
                         double *
                                                 sPhis,
                         size t
                                                 sP,
                         double *
                                                 sThetas,
                         size_t
                                                 sQ,
                         MODEL_RETVAL_FUNC retType,
                                                 maxIter
                         size_t
                        )
```

Returns an array of cells for the initial (non-optimal), optimal or standard errors of the model's parameters.

Returns

status code of the operation

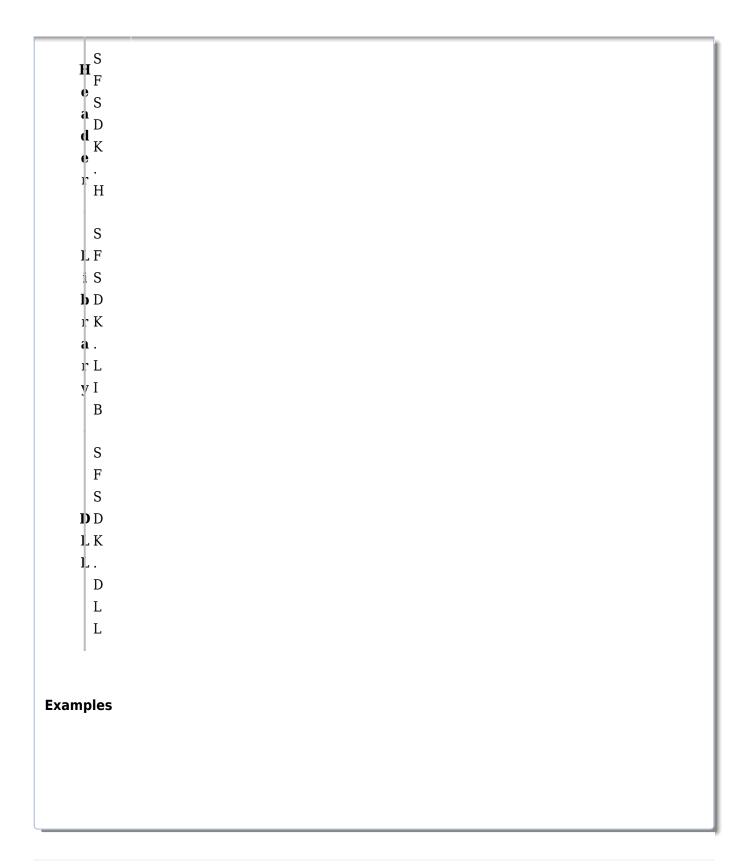
Return values

```
NDK_SUCCESS Operation successful
```

NDK FAILED Operation unsuccessful. See Macros for full list.

Parameters

[in,out] **pData** is the univariate time series data (a one dimensional array).


[in]	pFactors	is the exogneous factors time series data (each column is a separate		
		factor, and each row is an observation).		
[in]	nSize	is the numl	per of observations.	
[in]	nFactors	is the numl	per of exognous factors	
[in,out]	fBetas	is the weights or loading of the exogneous factors		
[in,out]	mean	is the mean of the differenced time series process		
[in,out]	sigma	is the stand	lard deviation of the model's residuals/innovations.	
[in]	nIntegral	is the non-seasonal difference order		
[in,out]	phis	are the coefficients's values of the non-seasonal AR component		
[in]	p	is the order of the non-seasonal AR component		
[in,out]	thetas	are the coefficients's values of the non-seasonal MA component		
[in]	q	is the order of the non-seasonal MA component		
[in]	nSIntegral	is the seasonal difference		
[in]	nSPeriod	is the number of observations per one period (e.g. 12=Annual,		
		4=Quarter)		
[in,out]	sPhis	are the coefficients's values of the seasonal AR component		
[in]	sP	is the order of the seasonal AR component		
[in,out]	sThetas	are the coefficients's values of the seasonal MA component		
[in]	sQ	is the order of the seasonal MA component		
[in]	retType	is a switch to select the type of value returned: 1= Quick Guess,		
		2=Calibrated, 3= Std. Errors		
		Order	Description	
		1	Quick guess (non-optimal) of parameters values (default)	
		2	Calibrated (optimal) values for the model's parameters	
		3	Standard error of the parameters' values	
[in]	maxIter	is the maximum number of iterations used to calibrate the model. If		
		missing or less than 100, the default maximum of 100 is assumed.		

Remarks

- 1. The underlying model is described here.
- 2. The time series is homogeneous or equally spaced
- 3. The time series may include missing values (e.g. NaN) at either end.
- 4. Each column in the explanatory factors input matrix (i.e. X) corresponds to a separate variable.
- 5. Each row in the explanatory factors input matrix (i.e. X) corresponds to an observation.
- 6. Observations (i.e. rows) with missing values in X or Y are assumed missing.
- 7. The number of rows of the explanatory variable (X) must be at equal to the number of rows of the response variable (Y).
- 8. The intercept or the regression constant term input argument is optional. If omitted, a zero value is assumed.
- 9. For the input argument Beta:

- The input argument is optional and can be omitted, in which case no regression component is included (i.e. plain SARIMA).
- The order of the parameters defines how the exogenous factor input arguments are passed.
- One or more parameters may have missing value or an error code(i.e. #NUM!, #VALUE!, etc.).
- 10. The long-run mean argument (mean) of the differenced regression residuals can take any value. If omitted, a zero value is assumed.
- 11. The residuals/innovations standard deviation (sigma) must greater than zero.
- 12. For the input argument phi (parameters of the non-seasonal AR component):
 - The input argument is optional and can be omitted, in which case no non-seasonal AR component is included.
 - The order of the parameters starts with the lowest lag
 - The order of the non-seasonal AR component model is solely determined by the order of the last value in the array with a numeric value (vs. missing, or error).
- 13. For the input argument theta (parameters of the non-seasonal MA component):
 - The input argument is optional and can be omitted, in which case no non-seasonal MA component is included.
 - The order of the parameters starts with the lowest lag
 - The order of the non-seasonal MA component model is solely determined by the order of the last value in the array with a numeric value (vs. missing, or error).
- 14. For the input argument sPhi (parameters of the seasonal AR component):
 - The input argument is optional and can be omitted, in which case no seasonal AR component is included.
 - The order of the parameters starts with the lowest lag
 - The order of the seasonal AR component model is solely determined by the order of the last value in the array with a numeric value (vs. missing, or error).
- 15. For the input argument sTheta (parameters of the seasonal MA component):
 - The input argument is optional and can be omitted, in which case no seasonal MA component is included.
 - The order of the parameters starts with the lowest lag
 - The order of the seasonal MA component model is solely determined by the order of the last value in the array with a numeric value (vs. missing, or error).
- 16. The non-seasonal integration order d is optional and can be omitted, in which case d is assumed zero.
- 17. The seasonal integration order sD is optional and can be omitted, in which case sD is assumed zero.
- 18. The season length s is optional and can be omitted, in which case s is assumed zero (i.e. Plain ARIMA).

Requirements

References

Hamilton, J.D.; <u>Time Series Analysis</u>, Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; <u>Analysis of Financial Time Series</u> John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]