NDK SARIMA VALIDATE

Last Modified on 04/28/2016 12:35 pm CDT

- C/C++
- .Net

Examines the model's parameters for stability constraints (e.g. stationary, etc.).

Returns

status code of the operation

Return values

NDK SUCCESS Operation successful

NDK FAILED Operation unsuccessful. See Macros for full list.

Parameters

[in] mean is the model mean (i.e. mu).

[in] **sigma** is the standard deviation of the model's residuals/innovations.

[in] **nIntegral** is the non-seasonal difference order

[in] **phis** are the coefficients's values of the non-seasonal AR component

[in] **p** is the order of the non-seasonal AR component

[in] thetas are the coefficients's values of the non-seasonal MA component

is the order of the non-seasonal MA component

[in] **nSIntegral** is the seasonal difference

[in] **nSPeriod** is the number of observations per one period (e.g. 12=Annual, 4=Quarter)

[in] **sPhis** are the coefficients's values of the seasonal AR component

is the order of the seasonal AR component

[in] **sThetas** are the coefficients's values of the seasonal MA component

[in] **sQ** is the order of the seasonal MA component

Remarks

- 1. The underlying model is described here.
- 2. The time series is homogeneous or equally spaced
- 3. The time series may include missing values (e.g. NaN) at either end.
- 4. NDK_SARIMA_CHECK checks if \(\sigma\gt 0\) and if all the characteristic roots of the underlying ARMA model fall outside the unit circle.
- 5. The long-run mean argument (mean) can take any value or be omitted, in which case a zero value is assumed.
- 6. The residuals/innovations standard deviation (sigma) must be greater than zero.
- 7. For the input argument phi (parameters of the non-seasonal AR component):
 - The input argument is optional and can be omitted, in which case no non-seasonal AR component is included.
 - The order of the parameters starts with the lowest lag.
 - The order of the non-seasonal AR component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
- 8. For the input argument theta (parameters of the non-seasonal MA component):
 - The input argument is optional and can be omitted, in which case no non-seasonal MA component is included.
 - The order of the parameters starts with the lowest lag.
 - The order of the non-seasonal MA component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
- 9. For the input argument sPhi (parameters of the seasonal AR component):
 - The input argument is optional and can be omitted, in which case no seasonal AR component is included.
 - The order of the parameters starts with the lowest lag.
 - The order of the seasonal AR component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
- 10. For the input argument sTheta (parameters of the seasonal MA component):
 - The input argument is optional and can be omitted, in which case no seasonal MA component is included.
 - The order of the parameters starts with the lowest lag.
 - The order of the seasonal MA component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
- 11. The non-seasonal integration order d is optional and can be omitted, in which case d is assumed to be zero.
- 12. The seasonal integration order sD is optional and can be omitted, in which case sD is assumed to be zero.
- 13. The season length s is optional and can be omitted, in which case s is assumed to be zero (i.e. plain ARIMA).

Requirements

Header	SFSDK.H
Library	SFSDK.LIB
DLL	SFSDK.DLL

Examples

```
int NDK_SARIMA_VALIDATE(double mean, double sigma, short nIntegral, double[] phis, UIntPtr p, double[] thetas, UIntPtr q, short nSIntegral, double[] sPhis, UIntPtr sP,
```

Namespace: NumXLAPI

Class: SFSDK Scope: Public Lifetime: Static

Examines the model's parameters for stability constraints (e.g. stationary, etc.).

double[] sThetas,

UIntPtr sQ

)

Return Value

a value from NDK RETCODE enumeration for the status of the call.

NDK_SUCCESS operation successful

Error Code

Parameters

[in] **mean** is the model mean (i.e. mu).

[in] **sigma** is the standard deviation of the model's residuals/innovations.

[in] nIntegral is the non-seasonal difference order

[in] **phis** are the coefficients's values of the non-seasonal AR component

[in] **p** is the order of the non-seasonal AR component

[in] thetas are the coefficients's values of the non-seasonal MA component

[in] **q** is the order of the non-seasonal MA component

[in]nSIntegralis the seasonal difference[in]sPhisare the coefficients's values of the seasonal AR component[in]sPis the order of the seasonal AR component[in]sThetasare the coefficients's values of the seasonal MA component

is the order of the seasonal MA component

Remarks

[in]sQ

1. The underlying model is described **here**.

- 2. The time series is homogeneous or equally spaced
- 3. The time series may include missing values (e.g. NaN) at either end.
- 4. NDK_SARIMA_CHECK checks if \(\sigma\gt 0\) and if all the characteristic roots of the underlying ARMA model fall outside the unit circle.
- 5. The long-run mean argument (mean) can take any value or be omitted, in which case a zero value is assumed.
- 6. The residuals/innovations standard deviation (sigma) must be greater than zero.
- 7. For the input argument phi (parameters of the non-seasonal AR component):
 - The input argument is optional and can be omitted, in which case no non-seasonal AR component is included.
 - The order of the parameters starts with the lowest lag.
 - The order of the non-seasonal AR component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
- 8. For the input argument theta (parameters of the non-seasonal MA component):
 - The input argument is optional and can be omitted, in which case no non-seasonal MA component is included.
 - The order of the parameters starts with the lowest lag.
 - The order of the non-seasonal MA component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
- 9. For the input argument sPhi (parameters of the seasonal AR component):
 - The input argument is optional and can be omitted, in which case no seasonal AR component is included.
 - The order of the parameters starts with the lowest lag.
 - The order of the seasonal AR component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
- 10. For the input argument sTheta (parameters of the seasonal MA component):
 - The input argument is optional and can be omitted, in which case no seasonal MA component is included.
 - The order of the parameters starts with the lowest lag.
 - The order of the seasonal MA component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
- 11. The non-seasonal integration order d is optional and can be omitted, in which case d is assumed to be zero.
- 12. The seasonal integration order sD is optional and can be omitted, in which case sD is

assumed to be zero.

13. The season length - s - is optional and can be omitted, in which case s is assumed to be zero (i.e. plain ARIMA).

Exceptions

Exception Type	Condition	
None	N/A	

Requirements

Namespace	NumXLAPI
Class	SFSDK
Scope	Public
Lifetime	Static
Package	NumXLAPI.DLL

Examples

		e _			ce	_
$\boldsymbol{\sim}$	Ο.	то	rc	n	\boldsymbol{c}	

Hamilton, J.D.; Time Series Analysis, Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]