NDK_PCR_FITTED

Last Modified on 03/14/2016 11:33 am CDT

- <u>C/C++</u>
- <u>.Net</u>

int __stdcall NDK_PCR_FITTED (double ** X,

size_t	nXSize,
size_t	nXVars,
LPBYTE	mask,
size_t	nMaskLen,
double *	Υ,
size_t	nYSize,
double	intercept,
WORD	nRetType
)	

Returns an array of cells for the i-th principal component (or residuals).

Returns

status code of the operation

Return values

NDK_SUCCESS Operation successful

NDK_FAILED Operation unsuccessful. See <u>Macros</u> for full list.

Parameters

[in]	X	is the independent variables data matrix, such that each column
		represents one variable
[in]	nXSize	is the number of observations (i.e. rows) in X
[in]	nXVars	is the number of variables (i.e. columns) in X
[in]	mask	is the boolean array to select a subset of the input variables in X. If missing (i.e. NULL), all variables in X are included.
[in]	nMaskLen is the number of elements in mask	
[in,out]	Y	is the response or the dependent variable data array (one dimensional array)
[in]	nYSize	is the number of elements in Y
[in]	intercept	is the constant or the intercept value to fix (e.g. zero). If missing (NaN) an intercept will not be fixed and is computed normally

[in] **nRetType** is a switch to select the return output

- 1. fitted values (default),
- 2. residuals,
- 3. standardized residuals,
- 4. leverage (H),
- 5. Cook's distance.

Remarks

- 1. li>The underlying model is described **here**.
- 2. The regression fitted (aka estimated) conditional mean is calculated as follows: \[\hat y_i = E \left[Y| x_i1\cdots x_ip \right] = \alpha + \hat \beta_1 \times x_i1 + \cdots + \beta_p \times x_ip\] Residuals are defined as follows: \[e_i = y_i \hat y_i \] The standardized (aka studentized) residuals are calculated as follows: \[\bar e_i = \frac{e_i}{\hat \sigma_i} \] Where:
 - \circ \(\hat y\)is the estimated regression value.
 - $\circ\,$ \(e\) is the error term in the regression.
 - $\circ\,$ \(\hat e\) is the standardized error term.
 - $\circ\,$ \(\hat \sigma_i \) is the standard error for the i-th observation.
- 3. For the influential data analysis, PCR_FITTED computes two values: leverage statistics and Cook's distance for observations in our sample data.
- Leverage statistics describe the influence that each observed value has on the fitted value for that same observation. By definition, the diagonal elements of the hat matrix are the leverages. \[H = X \left(X^\top X \right)^{-1} X^\top\] \[L_i = h_{ii}\] Where:
 - $\circ\,$ \(H\) is the Hat matrix for uncorrelated error terms.
 - $\,\circ\,$ \(\mathbf{X}\) is a (N x p+1) matrix of explanatory variable where the first column is all ones.
 - $\,\circ\,$ \(L_i\) is the leverage statistics for the i-th observation.
 - \circ \(h_{ii}\) is the i-th diagonal element in the hat matrix.
- 5. Cook's distance measures the effect of deleting a given observation. Data points with large residuals (outliers) and/or high leverage may distort the outcome and accuracy of a regression. Points with a large Cook's distance are considered to merit closer examination in the analysis. \[D_i = \frac{e_i^2}{p \\mathrm{MSE}}\left[\frac{h_{ii}}{(1-h_{ii})^2}\right]\] Where:
 - $\circ\$ \(D_i\) is the Cook's distance for the i-th observation.
 - \circ \(h_{ii}) is the leverage statistics (or the i-th diagonal element in the hat matrix).
 - \(\mathrm{MSE}\) is the mean square error of the regression model.
 - \circ \(p\) is the number of explanatory variables.
 - \circ \(e_i\) is the error term (residual) for the i-th observation.
- 6. The sample data may include missing values.
- 7. Each column in the input matrix corresponds to a separate variable.
- 8. Each row in the input matrix corresponds to an observation.
- 9. Observations (i.e. row) with missing values in X or Y are removed.
- 10. The number of rows of the response variable (Y) must be equal to the number of rows of the explanatory variables (X).

11. The MLR_FITTED function is available starting with version 1.60 APACHE.

Requirements

S H F e S a D d K ė Η S LF. i S **b** D r K **a** . r L уI В S F S **D**D LK **L**. D L L

References

Hamilton, J .D.; <u>Time Series Analysis</u>, Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; <u>Analysis of Financial Time Series</u> John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]