NDK_MLR_STEPWISE

Last Modified on 05/05/2016 12:28 pm CDT

- C/C++
- .Net

```
int __stdcall NDK_MLR_STEPWISE(double ** X,
size_t nXSize,
size_t nXVars,
LPBYTE mask,
size_t nMaskLen,
double * Y,
size_t nYSize,
double intercept,
double alpha,
WORD nMode
)
```

Returns a list of the selected variables after performing the stepwise regression.

Returns

status code of the operation

Return values

NDK_SUCCESSOperation successfulNDK_FAILEDOperation unsuccessful. See Macros for full list.

Parameters

[in]	X	is the independent (explanatory) variables data matrix, such that each
		column represents one variable.
[in]	nXSize	is the number of observations (rows) in X.
[in]	nXVars	is the number of independent (explanatory) variables (columns) in X.
[in,out]	mask	is the boolean array to choose the explanatory variables in the model. If
		missing, all variables in X are included.
[in]	nMaskLei	nis the number of elements in the "mask."
[in]	Υ	is the response or dependent variable data array (one dimensional array of
		cells).
[in]	nYSize	is the number of observations in Y.
[in]	intercept	is the constant or intercept value to fix (e.g. zero). If missing (i.e. NaN), an
		intercept will not be fixed and is computed normally.
[in]	alpha	is the statistical significance of the test (i.e. alpha). If missing or omitted, an
		alpha value of 5% is assumed.
[in]	nMode	is a switch to select the variable's inclusion/exclusion approach (1=forward
		selection (default), 2=backward elimination , 3=bi-directional elimination):
	1.	Forward selection

- 2. Bacward elemination
- 3. Bi-directional elemination

Remarks

- 1. The underlying model is described here.
- 2. The stepwise regression includes regression models in which the choice of predictive variables is carried out by an automatic procedure. The procedure takes the form of a sequence of f-tests in selecting or eliminating explanatory variables.
- 3. The three main approaches are:
 - **Forward Selection** which involves starting with no variables in the model, testing the addition of each variable using a chosen model comparison criterion, adding the variable (if any) that improves the model the most, and repeating this process until no additional variables improve the model.
 - **Backward Elimination** which involves starting with all candidate variables, testing the deletion of each variable using a chosen model comparison criterion, deleting the variable (if any) that improves the model the most by being deleted, and repeating this process until no further improvement is possible.
 - **Bidirectional Elimination** a combination of the above tests, involves testing at each step for variables to be included or excluded.
- 4. One of the main issues with stepwise regression is that it searches a large space of possible models. Hence it is prone to overfitting the data.
- 5. The initial values in the mask array define the variables set that MLR_STEPWISE works with. In other words, variables which are not selected will not be considered during the regression.
- 6. The sample data may include missing values.
- 7. Each column in the input matrix corresponds to a separate variable.
- 8. Each row in the input matrix corresponds to an observation.
- 9. Observations (i.e. row) with missing values in X or Y are removed.
- 10. The number of rows of the response variable (Y) must be equal to the number of rows of the explanatory variables (X).
- 11. The MLR_STEPWISE function is available starting with version 1.60 APACHE.

Requirements

Header	SFSDK.H
Library	SFSDK.LIB
DLL	SFSDK.DLL

Namespace: NumXLAPI

	UIntPtr	nXSize,	Class: SFSDK
	UIntPtr	nXVars,	Scope: Public
	byte[]	mask1,	Lifetime: Static
	byte[]	mask2,	
	UIntPtr	nMaskLen,	
	double[]	pYData,	
	UIntPtr	nYSize,	
	double	intercept,	
	double	alpha,	
	short	nRetType,	
ref double retVal			
)			

Returns a list of the selected variables after performing the stepwise regression.

Returns

status code of the operation

Return values

NDK_SUCCESSOperation successfulNDK_FAILEDOperation unsuccessful. See Macros for full list.

Parameters

[in]	pXData	is the independent (explanatory) variables data matrix, such that each
		column represents one variable.
[in]	nXSize	is the number of observations (rows) in pXData.
[in]	nXVars	is the number of independent (explanatory) variables (columns) in pXData.
[in,out]	mask	is the boolean array to choose the explanatory variables in the model. If
		missing, all variables in pXData are included.
[in]	nMaskLer	his the number of elements in the "mask."
[in]	pYData	is the response or dependent variable data array (one dimensional array of
		cells).
[in]	nYSize	is the number of observations in pYData.
[in]	intercept	is the constant or intercept value to fix (e.g. zero). If missing (i.e. NaN), an
		intercept will not be fixed and is computed normally.
[in]	alpha	is the statistical significance of the test (i.e. alpha). If missing or omitted, an
		alpha value of 5% is assumed.
[in]	nMode	is a switch to select the variable's inclusion/exclusion approach (1=forward
		selection (default), 2=backward elimination, 3=bi-directional elimination):
	1.	Forward selection
	2.	Bacward elemination
	3.	Bi-directional elemination

- 1. The underlying model is described here.
- The stepwise regression includes regression models in which the choice of predictive variables is carried out by an automatic procedure. The procedure takes the form of a sequence of f-tests in selecting or eliminating explanatory variables.
- 3. The three main approaches are:
 - **Forward Selection** which involves starting with no variables in the model, testing the addition of each variable using a chosen model comparison criterion, adding the variable (if any) that improves the model the most, and repeating this process until no additional variables improve the model.
 - **Backward Elimination** which involves starting with all candidate variables, testing the deletion of each variable using a chosen model comparison criterion, deleting the variable (if any) that improves the model the most by being deleted, and repeating this process until no further improvement is possible.
 - **Bidirectional Elimination** a combination of the above tests, involves testing at each step for variables to be included or excluded.
- 4. One of the main issues with stepwise regression is that it searches a large space of possible models. Hence it is prone to overfitting the data.
- 5. The initial values in the mask array define the variables set that MLR_STEPWISE works with. In other words, variables which are not selected will not be considered during the regression.
- 6. The sample data may include missing values.
- 7. Each column in the input matrix corresponds to a separate variable.
- 8. Each row in the input matrix corresponds to an observation.
- 9. Observations (i.e. row) with missing values in X or Y are removed.
- 10. The number of rows of the response variable (Y) must be equal to the number of rows of the explanatory variables (X).
- 11. The MLR_STEPWISE function is available starting with version 1.60 APACHE.

Exceptions

Exception Type	Condition
None	N/A

Requirements

Namespace	NumXLAPI
Class	SFSDK
Scope	Public
Lifetime	Static

References

Hamilton, J .D.; Time Series Analysis , Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]