NDK_MLR_ANOVA

Last Modified on 07/15/2016 10:21 am CDT

- C/C++
- .Net

int __stdcall NDK_MLR_ANOVA(double ** pXData, size_t nXSize, size_t nXVars, LPBYTE mask, size_t nMaskLen, double * Y, size_t nYSize, double intercept, WORD nRetType, double * retVal)

Calculates the regression model analysis of the variance (ANOVA) values.

Returns

status code of the operation

Return values

NDK_SUCCESSOperation successfulNDK_FAILEDOperation unsuccessful. See Macros for full list.

Parameters

[in]	pXData	is the independent (explanatory) variables data matrix, such that each column
		represents one variable.
[in]	nXSize	is the number of observations (rows) in pXData
[in]	nXVars	is the number of independent (explanatory) variables (columns) in pXData.
[in]	mask	is the boolean array to choose the explanatory variables in the model. If
		missing, all variables in pXData are included.
[in]	nMaskLer	his the number of elements in the "mask."
[in]	Υ	is the response or dependent variable data array (one dimensional array of
		cells).
[in]	nYSize	is the number of observations in Y.
[in]	intercept	is the constant or intercept value to fix (e.g. zero). If missing (i.e. NaN), an
		intercept will not be fixed and is computed normally.
[in]	nRetType	is a switch to select the output (1=SSR (default), 2=SSE, 3=SST, 4=MSR,
		5=MSE, 6=F-stat, 7=P-value):
	1.	SSR (sum of squares of the regression)
	2.	SSE (sum of squares of the residuals)
	3.	SST (sum of squares of the dependent variable)

- 4. MSR (mean squares of the regression)
- 5. MSE (mean squares error or residuals)
- 6. F-stat (test score)
- 7. Significance F (P-value of the test)

[out] retVal is the calculated statistics ANOVA output.

Remarks

- 1. The underlying model is described here.
- 2. $(\frac{y} = \alpha + \frac{1}{times} + \frac{x_1 + \frac{x_1 + \frac{x_2 1}{times}}{times} + \frac{x_1 + \frac{x_2 1}{times}}{times})$
- 3. The regression ANOVA table which examines the following hypothesis: \[\mathbf{H}_o: \beta_1 = \beta_2 = \dots = \beta_p = 0\] \[\mathbf{H}_1: \exists \beta_i \neq 0, i \in \left[1,0 \right] \]
- 4. In other words, the regression ANOVA examines the probability that regression does NOT explain the variation in \(\mathbf{y}\), i.e. that any fit is <u>due purely to chance</u>.
- 5. The MLR_ANOVA calculates the different values in the ANOVA tables as shown below: \ [\mathbf{SST}=\sum_{i=1}^N \left(Y_i - \bar Y \right)^2 \] \[\mathbf{SSR}=\sum_{i=1}^N \left(\hat Y_i - \bar Y \right)^2 \] \[\mathbf{SSR}=\sum_{i=1}^N \left(Y_i - \hat Y_i \right)^2 \] Where:
 - \(N\) is the number of non-missing observations in the sample data.
 - \(\bar Y\) is the empirical sample average for the dependent variable.
 - \(\hat Y_i\) is the regression model estimate value for the i-th observation.
 - \(\mathbf{SST}\) is the total sum of squares for the dependent variable.
 - \(\mathbf{SSR}\) is the total sum of squares for the regression
 - \(\mathbf{SSE}\) is the total sum of error (aka residuals \(\epsilon\) terms for the regression (i.e. \(\epsilon = y - \hat y)\) estimate.
 - o \(\mathbf{SST} = \mathbf{SSR} + \mathbf{SSE}\)

 $AND [[mathbf{MSR} = \rac{mathbf{SSR} }[p]] [[mathbf{MSE} = \rac{mathbf{SSE} }[N-p-1]] \\ [[mathbf{F-Stat} = \rac{mathbf{MSR} }[mathbf{MSE}]] \\ Where:$

- \(p\) is the number of explanatory (aka predictor) variables in the regression.
- \(\mathbf{MSR}\) is the mean squares of the regression.
- \(\mathbf{MSE}\) is the mean squares of the residuals.
- \(\textrm{F-Stat}\) is the test score of the hypothesis.
- \(\textrm{F-Stat} \sim \mathbf{F}\left(p,N-p-1 \right)\)
- 6. The sample data may include missing values.
- 7. Each column in the inputm atrix corresponds to a separate variable.
- 8. Each row in the input matrix corresponds to an observation.
- 9. Observations (i.e. row) with missing values in X or Y are removed.
- 10. The number of rows of the response variable (Y) must be equal to the number of rows of the explanatory variables (X).
- 11. The MLR_ANOVA function is available starting with version 1.60 APACHE.

Requirements

Header	SFSDK.H
Library	SFSDK.LIB
DLL	SFSDK.DLL

int NDK_MLR_ANOVA	(double[]	pXData,
	UIntPtr	nXSize,
	UIntPtr	nXVars,
	byte	mask,
	UIntPtr	nMaskLen,
	double[]	pYData,
	UIntPtr	nYSize,
	double	intercept,
	short	nRetType,
	ref double	retVal
)	

Namespace: NumXLAPI Class: SFSDK Scope: Public Lifetime: Static

Calculates the regression model analysis of the variance (ANOVA) values.

Return Value

a value from NDK_RETCODE enumeration for the status of the call.

NDK_SUCCESS operation successful Error Code

Error

Parameters

[in] pXData	is the independent (explanatory) variables data matrix, such that each column		
	represents one variable.		

- [in] **nXSize** is the number of observations (rows) in pXData
- [in] **nXVars** is the number of independent (explanatory) variables (columns) in pXData.
- [in] mask is the boolean array to choose the explanatory variables in the model. If missing, all variables in X are included.
- [in] **nMaskLen**is the number of elements in the "mask."
- [in] Y is the response or dependent variable data array (one dimensional array of cells).
- [in] **nYSize** is the number of observations in Y.
- [in] **intercept** is the constant or intercept value to fix (e.g. zero). If missing (i.e. NaN), an intercept will not be fixed and is computed normally.
- [in] **nRetType** is a switch to select the output (1=SSR (default), 2=SSE, 3=SST, 4=MSR, 5=MSE, 6=F-stat, 7=P-value):
 - 1. SSR (sum of squares of the regression)
 - 2. SSE (sum of squares of the residuals)
 - 3. SST (sum of squares of the dependent variable)

- 4. MSR (mean squares of the regression)
- 5. MSE (mean squares error or residuals)
- 6. F-stat (test score)
- 7. Significance F (P-value of the test)

[out] retVal is the calculated statistics ANOVA output.

Remarks

- 1. The underlying model is described here.
- 3. The regression ANOVA table which examines the following hypothesis: \[\mathbf{H}_o:\beta_1 = \beta_2 = \dots = \beta_p = 0\] \[\mathbf{H}_1: \exists \beta_i \neq 0, i \in \left[1,0 \right] \]
- 4. In other words, the regression ANOVA examines the probability that regression does NOT explain the variation in \(\mathbf{y}\), i.e. that any fit is <u>due purely to chance</u>.
- 5. The MLR_ANOVA calculates the different values in the ANOVA tables as shown below: \ [\mathbf{SST}=\sum_{i=1}^N \left(Y_i - \bar Y \right)^2 \] \[\mathbf{SSR}=\sum_{i=1}^N \left(\hat Y_i - \bar Y \right)^2 \] \[\mathbf{SSR}=\sum_{i=1}^N \left(Y_i - \hat Y_i \right)^2 \] Where:
 - \(N\) is the number of non-missing observations in the sample data.
 - \(\bar Y\) is the empirical sample average for the dependent variable.
 - \(\hat Y_i\) is the regression model estimate value for the i-th observation.
 - \(\mathbf{SST}\) is the total sum of squares for the dependent variable.
 - \(\mathbf{SSR}\) is the total sum of squares for the regression (i.e. \$\hat y\$) estimate.
 - \(\mathbf{SSE}\) is the total sum of error (aka residuals \$\epsilon\$) terms for the regression (i.e. \(\epsilon = y - \hat y)\) estimate.
 - o \(\mathbf{SST} = \mathbf{SSR} + \mathbf{SSE}\)

 $AND [[mathbf{MSR} = \rac{mathbf{SSR} }[p]] [[mathbf{MSE} = \rac{mathbf{SSE} }[N-p-1]] \\ [[mathbf{F-Stat} = \rac{mathbf{MSR} }[mathbf{MSE}]] \\ Where:$

- \(p\) is the number of explanatory (aka predictor) variables in the regression.
- \(\mathbf{MSR}\) is the mean squares of the regression.
- \(\mathbf{MSE}\) is the mean squares of the residuals.
- \(\textrm{F-Stat}\) is the test score of the hypothesis.
- \(\textrm{F-Stat} \sim \mathbf{F}\left(p,N-p-1 \right)\)
- 6. The sample data may include missing values.
- 7. Each column in the inputm atrix corresponds to a separate variable.
- 8. Each row in the input matrix corresponds to an observation.
- 9. Observations (i.e. row) with missing values in X or Y are removed.
- 10. The number of rows of the response variable (Y) must be equal to the number of rows of the explanatory variables (X).
- 11. The MLR_ANOVA function is available starting with version 1.60 APACHE.

Exceptions

None N/A	
----------	--

Requirements

Namespace	NumXLAPI
Class	SFSDK
Scope	Public
Lifetime	Static
Package	NumXLAPI.DLL

Examples

References

Hamilton, J .D.; Time Series Analysis, Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]