NDK LOGIT

Last Modified on 01/06/2017 6:19 pm CST

- C/C++
- .Net

Computes the logit transformation, including its inverse.

Returns

status code of the operation

Return values

```
NDK_SUCCESS Operation successful

NDK FAILED Operation unsuccessful. See Macros for full list.
```

Parameters

```
    [in, out] X is the univariate time series data (a one dimensional array).
    [in] N is the number of observations in X.
    [in] retTYpe is a number that determines the type of return value: 1 (or missing)=logit, 2=inverse logit.
```

Remarks

- 1. The **logit** link function is very commonly used for parameters that lie in the unit interval. Numerical values of theta close to 0 or 1 or out of range result in #VALUE! or #N/A.
- 2. The **logit** transformation is defined as follows: $[y=\text{Logit}(x)=\ln{\frac{x}{1-x}}]$ And $[x=\text{Logit}^{-1}(y)=\frac{e^y}{e^y+1}]$ Where:
 - \(x_{t}\) is the input value of the input time series at time \(t\). X must be between 0 and 1,
 exclusive
 - \(y_{t}\) is the transformed logit value at time \(t\)
 - \(\textit{Logit}^{-1}\) is the inverse logit transformation
- 3. The **logit** function accepts a single value or an array of values for X.

Requirements

Header	SFSDK.H
Library	SFSDK.LIB

DLL SFSDK.DLL

Examples

Namespace: NumXLAPI

Class: SFSDK Scope: Public Lifetime: Static

Computes the logit transformation, including its inverse.

Returns

status code of the operation

Return values

NDK_SUCCESS Operation successful

NDK_FAILED Operation unsuccessful. See Macros for full list.

Parameters

[in, out] **pData** is the univariate time series data (a one dimensional array).

[in] **nSize** is the number of observations in pData.

argRetType is a number that determines the type of return value: 1 (or missing)=logit,

2=inverse logit.

Remarks

- 1. The **logit** link function is very commonly used for parameters that lie in the unit interval. Numerical values of theta close to 0 or 1 or out of range result in #VALUE! or #N/A.
- 2. The **logit** transformation is defined as follows: $[y=\text{Logit}(x)=\ln{\frac{x}{1-x}}]$ And $[x=\text{Logit}^{-1}(y)=\frac{e^y}{e^y+1}]$ Where:
 - \cdot \(x_{t}\) is the input value of the input time series at time \(t\). X must be between 0 and 1, exclusive

- \(y_{t}\) is the transformed logit value at time \(t\)
- \(\textit{Logit}^{-1}\) is the inverse logit transformation
- 3. The **logit** function accepts a single value or an array of values for X.

Exceptions

Exception Type	Condition
None	N/A

Requirements

Namespace	NumXLAPI
Class	SFSDK
Scope	Public
Lifetime	Static
Package	NumXLAPI.DLL

Examples

References

- * John H. Aldrich, Forrest D. Nelson; <u>Linear Probability</u>, <u>Logit</u>, <u>and Probit Models</u>; SAGE Publications, Inc; 1st Edition(Nov 01, 1984), ISBN: 0803921330
- * Hamilton, J.D.; Time Series Analysis, Princeton University Press (1994), ISBN 0-691-04289-6
- * Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740
- * D. S.G. Pollock; <u>Handbook of Time Series Analysis</u>, <u>Signal Processing</u>, <u>and Dynamics</u>; Academic Press; Har/Cdr edition(Nov 17, 1999), ISBN: 125609906
- * Box, Jenkins and Reisel; <u>Time Series Analysis: Forecasting and Control</u>; John Wiley & SONS.; 4th edition(Jun 30, 2008), ISBN: 470272848

See Also

[template("related")]